Loading…
Structural basis for the glucan phosphatase activity of Starch Excess4
Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize th...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-08, Vol.107 (35), p.15379-15384 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13 |
container_end_page | 15384 |
container_issue | 35 |
container_start_page | 15379 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Kooi, Craig W. Vander Taylor, Adam O. Pace, Rachel M. Meekins, David A. Guo, Hou-Fu Kim, Youngjun Gentry, Matthew S. Dixon, Jack E. |
description | Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase. |
doi_str_mv | 10.1073/pnas.1009386107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_749477532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862258</jstor_id><sourcerecordid>27862258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhkVoSDYf55xaRO5u9GVLuhRK2E0LgR6Su5DHUuxlY7mSvDT_vlo22W1PEppnHmb0InRDyVdKJL-bRpvKjWiumvJwghaUaFo1QpNPaEEIk5USTJyji5TWpHC1ImfonJFGaibkAq2ecpwhz9FucGvTkLAPEefe4ZfNDHbEUx_S1Ntsk8MW8rAd8hsOHj9lG6HHyz_gUhJX6NTbTXLX7-clel4tn-9_VI-_Hn7ef3-sQGieq042oDqtOwnApat5x1pZK9-CpsS2rNPMUylKrVOeugak1t7yzirfOKD8En3ba6e5fXUduDGXwc0Uh1cb30ywg_m_Mg69eQlbwzRnDWNFcLsXhJQHk2DIDnoI4-ggm_KPTHF-hKYYfs8uZbMOcxzLXkYKLaSs-c50t4cghpSi84cpKDG7bMwuG3PMpnR8-Xf4A_8RRgHwO7DrPOqk4bWhNZe6IJ_3yDrlEI8Kqcp2teJ_AbHBn-I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749477532</pqid></control><display><type>article</type><title>Structural basis for the glucan phosphatase activity of Starch Excess4</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Kooi, Craig W. Vander ; Taylor, Adam O. ; Pace, Rachel M. ; Meekins, David A. ; Guo, Hou-Fu ; Kim, Youngjun ; Gentry, Matthew S. ; Dixon, Jack E.</creator><creatorcontrib>Kooi, Craig W. Vander ; Taylor, Adam O. ; Pace, Rachel M. ; Meekins, David A. ; Guo, Hou-Fu ; Kim, Youngjun ; Gentry, Matthew S. ; Dixon, Jack E. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1009386107</identifier><identifier>PMID: 20679247</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Amino Acid Sequence ; ANIMALS ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; ARCHITECTURE ; Binding Sites - genetics ; Biochemistry ; Biological Sciences ; CARBOHYDRATES ; CATABOLISM ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; Dual-Specificity Phosphatases - chemistry ; Dual-Specificity Phosphatases - genetics ; Dual-Specificity Phosphatases - metabolism ; ENERGY STORAGE ; Enzymes ; Glucans ; Glucans - metabolism ; GLYCOGEN ; MATERIALS SCIENCE ; METABOLISM ; Models, Molecular ; Molecular Sequence Data ; Molecular structure ; Molecules ; MUTAGENESIS ; PHOSPHATASES ; Phosphates ; Phosphorylation ; PHOSPHOTRANSFERASES ; POLYMERS ; Protein Binding ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; RESIDUES ; Sequence Homology, Amino Acid ; STABILITY ; STARCH ; Starch - metabolism ; Starches ; STORAGE ; Structure-Activity Relationship</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (35), p.15379-15384</ispartof><rights>Copyright © 1993-2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 31, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13</citedby><cites>FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/35.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862258$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27862258$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20679247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1002833$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kooi, Craig W. Vander</creatorcontrib><creatorcontrib>Taylor, Adam O.</creatorcontrib><creatorcontrib>Pace, Rachel M.</creatorcontrib><creatorcontrib>Meekins, David A.</creatorcontrib><creatorcontrib>Guo, Hou-Fu</creatorcontrib><creatorcontrib>Kim, Youngjun</creatorcontrib><creatorcontrib>Gentry, Matthew S.</creatorcontrib><creatorcontrib>Dixon, Jack E.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Structural basis for the glucan phosphatase activity of Starch Excess4</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.</description><subject>Active sites</subject><subject>Amino Acid Sequence</subject><subject>ANIMALS</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>ARCHITECTURE</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>CARBOHYDRATES</subject><subject>CATABOLISM</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>Dual-Specificity Phosphatases - chemistry</subject><subject>Dual-Specificity Phosphatases - genetics</subject><subject>Dual-Specificity Phosphatases - metabolism</subject><subject>ENERGY STORAGE</subject><subject>Enzymes</subject><subject>Glucans</subject><subject>Glucans - metabolism</subject><subject>GLYCOGEN</subject><subject>MATERIALS SCIENCE</subject><subject>METABOLISM</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>MUTAGENESIS</subject><subject>PHOSPHATASES</subject><subject>Phosphates</subject><subject>Phosphorylation</subject><subject>PHOSPHOTRANSFERASES</subject><subject>POLYMERS</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>RESIDUES</subject><subject>Sequence Homology, Amino Acid</subject><subject>STABILITY</subject><subject>STARCH</subject><subject>Starch - metabolism</subject><subject>Starches</subject><subject>STORAGE</subject><subject>Structure-Activity Relationship</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkU1r3DAQhkVoSDYf55xaRO5u9GVLuhRK2E0LgR6Su5DHUuxlY7mSvDT_vlo22W1PEppnHmb0InRDyVdKJL-bRpvKjWiumvJwghaUaFo1QpNPaEEIk5USTJyji5TWpHC1ImfonJFGaibkAq2ecpwhz9FucGvTkLAPEefe4ZfNDHbEUx_S1Ntsk8MW8rAd8hsOHj9lG6HHyz_gUhJX6NTbTXLX7-clel4tn-9_VI-_Hn7ef3-sQGieq042oDqtOwnApat5x1pZK9-CpsS2rNPMUylKrVOeugak1t7yzirfOKD8En3ba6e5fXUduDGXwc0Uh1cb30ywg_m_Mg69eQlbwzRnDWNFcLsXhJQHk2DIDnoI4-ggm_KPTHF-hKYYfs8uZbMOcxzLXkYKLaSs-c50t4cghpSi84cpKDG7bMwuG3PMpnR8-Xf4A_8RRgHwO7DrPOqk4bWhNZe6IJ_3yDrlEI8Kqcp2teJ_AbHBn-I</recordid><startdate>20100831</startdate><enddate>20100831</enddate><creator>Kooi, Craig W. Vander</creator><creator>Taylor, Adam O.</creator><creator>Pace, Rachel M.</creator><creator>Meekins, David A.</creator><creator>Guo, Hou-Fu</creator><creator>Kim, Youngjun</creator><creator>Gentry, Matthew S.</creator><creator>Dixon, Jack E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20100831</creationdate><title>Structural basis for the glucan phosphatase activity of Starch Excess4</title><author>Kooi, Craig W. Vander ; Taylor, Adam O. ; Pace, Rachel M. ; Meekins, David A. ; Guo, Hou-Fu ; Kim, Youngjun ; Gentry, Matthew S. ; Dixon, Jack E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active sites</topic><topic>Amino Acid Sequence</topic><topic>ANIMALS</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>ARCHITECTURE</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>CARBOHYDRATES</topic><topic>CATABOLISM</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>Dual-Specificity Phosphatases - chemistry</topic><topic>Dual-Specificity Phosphatases - genetics</topic><topic>Dual-Specificity Phosphatases - metabolism</topic><topic>ENERGY STORAGE</topic><topic>Enzymes</topic><topic>Glucans</topic><topic>Glucans - metabolism</topic><topic>GLYCOGEN</topic><topic>MATERIALS SCIENCE</topic><topic>METABOLISM</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>MUTAGENESIS</topic><topic>PHOSPHATASES</topic><topic>Phosphates</topic><topic>Phosphorylation</topic><topic>PHOSPHOTRANSFERASES</topic><topic>POLYMERS</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>RESIDUES</topic><topic>Sequence Homology, Amino Acid</topic><topic>STABILITY</topic><topic>STARCH</topic><topic>Starch - metabolism</topic><topic>Starches</topic><topic>STORAGE</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kooi, Craig W. Vander</creatorcontrib><creatorcontrib>Taylor, Adam O.</creatorcontrib><creatorcontrib>Pace, Rachel M.</creatorcontrib><creatorcontrib>Meekins, David A.</creatorcontrib><creatorcontrib>Guo, Hou-Fu</creatorcontrib><creatorcontrib>Kim, Youngjun</creatorcontrib><creatorcontrib>Gentry, Matthew S.</creatorcontrib><creatorcontrib>Dixon, Jack E.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kooi, Craig W. Vander</au><au>Taylor, Adam O.</au><au>Pace, Rachel M.</au><au>Meekins, David A.</au><au>Guo, Hou-Fu</au><au>Kim, Youngjun</au><au>Gentry, Matthew S.</au><au>Dixon, Jack E.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the glucan phosphatase activity of Starch Excess4</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-08-31</date><risdate>2010</risdate><volume>107</volume><issue>35</issue><spage>15379</spage><epage>15384</epage><pages>15379-15384</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20679247</pmid><doi>10.1073/pnas.1009386107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (35), p.15379-15384 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_749477532 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Active sites Amino Acid Sequence ANIMALS Arabidopsis Proteins - chemistry Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism ARCHITECTURE Binding Sites - genetics Biochemistry Biological Sciences CARBOHYDRATES CATABOLISM CRYSTAL STRUCTURE Crystallography, X-Ray Dual-Specificity Phosphatases - chemistry Dual-Specificity Phosphatases - genetics Dual-Specificity Phosphatases - metabolism ENERGY STORAGE Enzymes Glucans Glucans - metabolism GLYCOGEN MATERIALS SCIENCE METABOLISM Models, Molecular Molecular Sequence Data Molecular structure Molecules MUTAGENESIS PHOSPHATASES Phosphates Phosphorylation PHOSPHOTRANSFERASES POLYMERS Protein Binding Protein Folding Protein Structure, Secondary Protein Structure, Tertiary Proteins RESIDUES Sequence Homology, Amino Acid STABILITY STARCH Starch - metabolism Starches STORAGE Structure-Activity Relationship |
title | Structural basis for the glucan phosphatase activity of Starch Excess4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20glucan%20phosphatase%20activity%20of%20Starch%20Excess4&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kooi,%20Craig%20W.%20Vander&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2010-08-31&rft.volume=107&rft.issue=35&rft.spage=15379&rft.epage=15384&rft.pages=15379-15384&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1009386107&rft_dat=%3Cjstor_proqu%3E27862258%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=749477532&rft_id=info:pmid/20679247&rft_jstor_id=27862258&rfr_iscdi=true |