Loading…

Structural basis for the glucan phosphatase activity of Starch Excess4

Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-08, Vol.107 (35), p.15379-15384
Main Authors: Kooi, Craig W. Vander, Taylor, Adam O., Pace, Rachel M., Meekins, David A., Guo, Hou-Fu, Kim, Youngjun, Gentry, Matthew S., Dixon, Jack E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13
cites cdi_FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13
container_end_page 15384
container_issue 35
container_start_page 15379
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Kooi, Craig W. Vander
Taylor, Adam O.
Pace, Rachel M.
Meekins, David A.
Guo, Hou-Fu
Kim, Youngjun
Gentry, Matthew S.
Dixon, Jack E.
description Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.
doi_str_mv 10.1073/pnas.1009386107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_749477532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862258</jstor_id><sourcerecordid>27862258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhkVoSDYf55xaRO5u9GVLuhRK2E0LgR6Su5DHUuxlY7mSvDT_vlo22W1PEppnHmb0InRDyVdKJL-bRpvKjWiumvJwghaUaFo1QpNPaEEIk5USTJyji5TWpHC1ImfonJFGaibkAq2ecpwhz9FucGvTkLAPEefe4ZfNDHbEUx_S1Ntsk8MW8rAd8hsOHj9lG6HHyz_gUhJX6NTbTXLX7-clel4tn-9_VI-_Hn7ef3-sQGieq042oDqtOwnApat5x1pZK9-CpsS2rNPMUylKrVOeugak1t7yzirfOKD8En3ba6e5fXUduDGXwc0Uh1cb30ywg_m_Mg69eQlbwzRnDWNFcLsXhJQHk2DIDnoI4-ggm_KPTHF-hKYYfs8uZbMOcxzLXkYKLaSs-c50t4cghpSi84cpKDG7bMwuG3PMpnR8-Xf4A_8RRgHwO7DrPOqk4bWhNZe6IJ_3yDrlEI8Kqcp2teJ_AbHBn-I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749477532</pqid></control><display><type>article</type><title>Structural basis for the glucan phosphatase activity of Starch Excess4</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Kooi, Craig W. Vander ; Taylor, Adam O. ; Pace, Rachel M. ; Meekins, David A. ; Guo, Hou-Fu ; Kim, Youngjun ; Gentry, Matthew S. ; Dixon, Jack E.</creator><creatorcontrib>Kooi, Craig W. Vander ; Taylor, Adam O. ; Pace, Rachel M. ; Meekins, David A. ; Guo, Hou-Fu ; Kim, Youngjun ; Gentry, Matthew S. ; Dixon, Jack E. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1009386107</identifier><identifier>PMID: 20679247</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Amino Acid Sequence ; ANIMALS ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; ARCHITECTURE ; Binding Sites - genetics ; Biochemistry ; Biological Sciences ; CARBOHYDRATES ; CATABOLISM ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; Dual-Specificity Phosphatases - chemistry ; Dual-Specificity Phosphatases - genetics ; Dual-Specificity Phosphatases - metabolism ; ENERGY STORAGE ; Enzymes ; Glucans ; Glucans - metabolism ; GLYCOGEN ; MATERIALS SCIENCE ; METABOLISM ; Models, Molecular ; Molecular Sequence Data ; Molecular structure ; Molecules ; MUTAGENESIS ; PHOSPHATASES ; Phosphates ; Phosphorylation ; PHOSPHOTRANSFERASES ; POLYMERS ; Protein Binding ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; RESIDUES ; Sequence Homology, Amino Acid ; STABILITY ; STARCH ; Starch - metabolism ; Starches ; STORAGE ; Structure-Activity Relationship</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (35), p.15379-15384</ispartof><rights>Copyright © 1993-2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 31, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13</citedby><cites>FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/35.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862258$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27862258$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20679247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1002833$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kooi, Craig W. Vander</creatorcontrib><creatorcontrib>Taylor, Adam O.</creatorcontrib><creatorcontrib>Pace, Rachel M.</creatorcontrib><creatorcontrib>Meekins, David A.</creatorcontrib><creatorcontrib>Guo, Hou-Fu</creatorcontrib><creatorcontrib>Kim, Youngjun</creatorcontrib><creatorcontrib>Gentry, Matthew S.</creatorcontrib><creatorcontrib>Dixon, Jack E.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Structural basis for the glucan phosphatase activity of Starch Excess4</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.</description><subject>Active sites</subject><subject>Amino Acid Sequence</subject><subject>ANIMALS</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>ARCHITECTURE</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>CARBOHYDRATES</subject><subject>CATABOLISM</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>Dual-Specificity Phosphatases - chemistry</subject><subject>Dual-Specificity Phosphatases - genetics</subject><subject>Dual-Specificity Phosphatases - metabolism</subject><subject>ENERGY STORAGE</subject><subject>Enzymes</subject><subject>Glucans</subject><subject>Glucans - metabolism</subject><subject>GLYCOGEN</subject><subject>MATERIALS SCIENCE</subject><subject>METABOLISM</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>MUTAGENESIS</subject><subject>PHOSPHATASES</subject><subject>Phosphates</subject><subject>Phosphorylation</subject><subject>PHOSPHOTRANSFERASES</subject><subject>POLYMERS</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>RESIDUES</subject><subject>Sequence Homology, Amino Acid</subject><subject>STABILITY</subject><subject>STARCH</subject><subject>Starch - metabolism</subject><subject>Starches</subject><subject>STORAGE</subject><subject>Structure-Activity Relationship</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkU1r3DAQhkVoSDYf55xaRO5u9GVLuhRK2E0LgR6Su5DHUuxlY7mSvDT_vlo22W1PEppnHmb0InRDyVdKJL-bRpvKjWiumvJwghaUaFo1QpNPaEEIk5USTJyji5TWpHC1ImfonJFGaibkAq2ecpwhz9FucGvTkLAPEefe4ZfNDHbEUx_S1Ntsk8MW8rAd8hsOHj9lG6HHyz_gUhJX6NTbTXLX7-clel4tn-9_VI-_Hn7ef3-sQGieq042oDqtOwnApat5x1pZK9-CpsS2rNPMUylKrVOeugak1t7yzirfOKD8En3ba6e5fXUduDGXwc0Uh1cb30ywg_m_Mg69eQlbwzRnDWNFcLsXhJQHk2DIDnoI4-ggm_KPTHF-hKYYfs8uZbMOcxzLXkYKLaSs-c50t4cghpSi84cpKDG7bMwuG3PMpnR8-Xf4A_8RRgHwO7DrPOqk4bWhNZe6IJ_3yDrlEI8Kqcp2teJ_AbHBn-I</recordid><startdate>20100831</startdate><enddate>20100831</enddate><creator>Kooi, Craig W. Vander</creator><creator>Taylor, Adam O.</creator><creator>Pace, Rachel M.</creator><creator>Meekins, David A.</creator><creator>Guo, Hou-Fu</creator><creator>Kim, Youngjun</creator><creator>Gentry, Matthew S.</creator><creator>Dixon, Jack E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20100831</creationdate><title>Structural basis for the glucan phosphatase activity of Starch Excess4</title><author>Kooi, Craig W. Vander ; Taylor, Adam O. ; Pace, Rachel M. ; Meekins, David A. ; Guo, Hou-Fu ; Kim, Youngjun ; Gentry, Matthew S. ; Dixon, Jack E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active sites</topic><topic>Amino Acid Sequence</topic><topic>ANIMALS</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>ARCHITECTURE</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>CARBOHYDRATES</topic><topic>CATABOLISM</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>Dual-Specificity Phosphatases - chemistry</topic><topic>Dual-Specificity Phosphatases - genetics</topic><topic>Dual-Specificity Phosphatases - metabolism</topic><topic>ENERGY STORAGE</topic><topic>Enzymes</topic><topic>Glucans</topic><topic>Glucans - metabolism</topic><topic>GLYCOGEN</topic><topic>MATERIALS SCIENCE</topic><topic>METABOLISM</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>MUTAGENESIS</topic><topic>PHOSPHATASES</topic><topic>Phosphates</topic><topic>Phosphorylation</topic><topic>PHOSPHOTRANSFERASES</topic><topic>POLYMERS</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>RESIDUES</topic><topic>Sequence Homology, Amino Acid</topic><topic>STABILITY</topic><topic>STARCH</topic><topic>Starch - metabolism</topic><topic>Starches</topic><topic>STORAGE</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kooi, Craig W. Vander</creatorcontrib><creatorcontrib>Taylor, Adam O.</creatorcontrib><creatorcontrib>Pace, Rachel M.</creatorcontrib><creatorcontrib>Meekins, David A.</creatorcontrib><creatorcontrib>Guo, Hou-Fu</creatorcontrib><creatorcontrib>Kim, Youngjun</creatorcontrib><creatorcontrib>Gentry, Matthew S.</creatorcontrib><creatorcontrib>Dixon, Jack E.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kooi, Craig W. Vander</au><au>Taylor, Adam O.</au><au>Pace, Rachel M.</au><au>Meekins, David A.</au><au>Guo, Hou-Fu</au><au>Kim, Youngjun</au><au>Gentry, Matthew S.</au><au>Dixon, Jack E.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for the glucan phosphatase activity of Starch Excess4</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-08-31</date><risdate>2010</risdate><volume>107</volume><issue>35</issue><spage>15379</spage><epage>15384</epage><pages>15379-15384</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20679247</pmid><doi>10.1073/pnas.1009386107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (35), p.15379-15384
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_749477532
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Active sites
Amino Acid Sequence
ANIMALS
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
ARCHITECTURE
Binding Sites - genetics
Biochemistry
Biological Sciences
CARBOHYDRATES
CATABOLISM
CRYSTAL STRUCTURE
Crystallography, X-Ray
Dual-Specificity Phosphatases - chemistry
Dual-Specificity Phosphatases - genetics
Dual-Specificity Phosphatases - metabolism
ENERGY STORAGE
Enzymes
Glucans
Glucans - metabolism
GLYCOGEN
MATERIALS SCIENCE
METABOLISM
Models, Molecular
Molecular Sequence Data
Molecular structure
Molecules
MUTAGENESIS
PHOSPHATASES
Phosphates
Phosphorylation
PHOSPHOTRANSFERASES
POLYMERS
Protein Binding
Protein Folding
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
RESIDUES
Sequence Homology, Amino Acid
STABILITY
STARCH
Starch - metabolism
Starches
STORAGE
Structure-Activity Relationship
title Structural basis for the glucan phosphatase activity of Starch Excess4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20the%20glucan%20phosphatase%20activity%20of%20Starch%20Excess4&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kooi,%20Craig%20W.%20Vander&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2010-08-31&rft.volume=107&rft.issue=35&rft.spage=15379&rft.epage=15384&rft.pages=15379-15384&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1009386107&rft_dat=%3Cjstor_proqu%3E27862258%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-d76c8d99d7cc37e53d2b758fbc910ab2d92f174c37d8f1e6c799fa3da8f6ec13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=749477532&rft_id=info:pmid/20679247&rft_jstor_id=27862258&rfr_iscdi=true