Loading…

Measures of the geographic concentration of industries: improving distance-based methods

We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introduci...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic geography 2010-09, Vol.10 (5), p.745-762
Main Authors: Marcon, Eric, Puech, Florence
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313
cites cdi_FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313
container_end_page 762
container_issue 5
container_start_page 745
container_title Journal of economic geography
container_volume 10
creator Marcon, Eric
Puech, Florence
description We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introducing a new cumulative function, M, for evaluating the relative geographic concentration and the co-location of industries in a non-homogeneous spatial framework. Secondly, some rigorous comparisons are made with the leading probability density function of Duranton and Overman (2005), Kd. The merits of the simultaneous use of Kd and M is proved, underlining the complementary nature of the results they provide.
doi_str_mv 10.1093/jeg/lbp056
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_750425601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26161425</jstor_id><sourcerecordid>26161425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK5evAvFo1B3pm2S1pssfsGKFwVvJUmTbspuU5NU8N_bpeJpXpiHd4aHkEuEW4QqX3W6Xe3kAJQdkQUWrEwzjnD8nyE7JWchdADIClosyOerFmH0OiTOJHGrk1a71otha1WiXK90H72I1vWHve2bMURvdbhL7H7w7tv2bdLYEMVEplIE3SR7HbeuCefkxIhd0Bd_c0k-Hh_e18_p5u3pZX2_SVVR0JgaA5xKLQ0rRSY4kxUtDQCXOWt4kSmKUnOmRIlcIeUSsapQQ24kUM5zzJfkeu6d3vkadYh150bfTydrTqHIKIMDdDNDyrsQvDb14O1e-J8aoT6Iqydx9Sxugq9muAvR-X8yY8hw6st_AayobCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750425601</pqid></control><display><type>article</type><title>Measures of the geographic concentration of industries: improving distance-based methods</title><source>EconLit s plnými texty</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Marcon, Eric ; Puech, Florence</creator><creatorcontrib>Marcon, Eric ; Puech, Florence</creatorcontrib><description>We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introducing a new cumulative function, M, for evaluating the relative geographic concentration and the co-location of industries in a non-homogeneous spatial framework. Secondly, some rigorous comparisons are made with the leading probability density function of Duranton and Overman (2005), Kd. The merits of the simultaneous use of Kd and M is proved, underlining the complementary nature of the results they provide.</description><identifier>ISSN: 1468-2702</identifier><identifier>EISSN: 1468-2710</identifier><identifier>DOI: 10.1093/jeg/lbp056</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Confidence interval ; Density distributions ; Economic activity ; Economic geography ; Geodetic position ; Geography ; Industrial areas ; Industrial concentration ; Industrial plants ; Location of industry ; Null hypothesis ; Overman ; Probability distribution ; Studies</subject><ispartof>Journal of economic geography, 2010-09, Vol.10 (5), p.745-762</ispartof><rights>Oxford University Press 2010</rights><rights>Copyright Oxford Publishing Limited(England) Sep 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313</citedby><cites>FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26161425$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26161425$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Marcon, Eric</creatorcontrib><creatorcontrib>Puech, Florence</creatorcontrib><title>Measures of the geographic concentration of industries: improving distance-based methods</title><title>Journal of economic geography</title><description>We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introducing a new cumulative function, M, for evaluating the relative geographic concentration and the co-location of industries in a non-homogeneous spatial framework. Secondly, some rigorous comparisons are made with the leading probability density function of Duranton and Overman (2005), Kd. The merits of the simultaneous use of Kd and M is proved, underlining the complementary nature of the results they provide.</description><subject>Confidence interval</subject><subject>Density distributions</subject><subject>Economic activity</subject><subject>Economic geography</subject><subject>Geodetic position</subject><subject>Geography</subject><subject>Industrial areas</subject><subject>Industrial concentration</subject><subject>Industrial plants</subject><subject>Location of industry</subject><subject>Null hypothesis</subject><subject>Overman</subject><subject>Probability distribution</subject><subject>Studies</subject><issn>1468-2702</issn><issn>1468-2710</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK5evAvFo1B3pm2S1pssfsGKFwVvJUmTbspuU5NU8N_bpeJpXpiHd4aHkEuEW4QqX3W6Xe3kAJQdkQUWrEwzjnD8nyE7JWchdADIClosyOerFmH0OiTOJHGrk1a71otha1WiXK90H72I1vWHve2bMURvdbhL7H7w7tv2bdLYEMVEplIE3SR7HbeuCefkxIhd0Bd_c0k-Hh_e18_p5u3pZX2_SVVR0JgaA5xKLQ0rRSY4kxUtDQCXOWt4kSmKUnOmRIlcIeUSsapQQ24kUM5zzJfkeu6d3vkadYh150bfTydrTqHIKIMDdDNDyrsQvDb14O1e-J8aoT6Iqydx9Sxugq9muAvR-X8yY8hw6st_AayobCM</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Marcon, Eric</creator><creator>Puech, Florence</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100901</creationdate><title>Measures of the geographic concentration of industries: improving distance-based methods</title><author>Marcon, Eric ; Puech, Florence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Confidence interval</topic><topic>Density distributions</topic><topic>Economic activity</topic><topic>Economic geography</topic><topic>Geodetic position</topic><topic>Geography</topic><topic>Industrial areas</topic><topic>Industrial concentration</topic><topic>Industrial plants</topic><topic>Location of industry</topic><topic>Null hypothesis</topic><topic>Overman</topic><topic>Probability distribution</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcon, Eric</creatorcontrib><creatorcontrib>Puech, Florence</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of economic geography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcon, Eric</au><au>Puech, Florence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measures of the geographic concentration of industries: improving distance-based methods</atitle><jtitle>Journal of economic geography</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>10</volume><issue>5</issue><spage>745</spage><epage>762</epage><pages>745-762</pages><issn>1468-2702</issn><eissn>1468-2710</eissn><abstract>We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introducing a new cumulative function, M, for evaluating the relative geographic concentration and the co-location of industries in a non-homogeneous spatial framework. Secondly, some rigorous comparisons are made with the leading probability density function of Duranton and Overman (2005), Kd. The merits of the simultaneous use of Kd and M is proved, underlining the complementary nature of the results they provide.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/jeg/lbp056</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1468-2702
ispartof Journal of economic geography, 2010-09, Vol.10 (5), p.745-762
issn 1468-2702
1468-2710
language eng
recordid cdi_proquest_journals_750425601
source EconLit s plnými texty; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Confidence interval
Density distributions
Economic activity
Economic geography
Geodetic position
Geography
Industrial areas
Industrial concentration
Industrial plants
Location of industry
Null hypothesis
Overman
Probability distribution
Studies
title Measures of the geographic concentration of industries: improving distance-based methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measures%20of%20the%20geographic%20concentration%20of%20industries:%20improving%20distance-based%20methods&rft.jtitle=Journal%20of%20economic%20geography&rft.au=Marcon,%20Eric&rft.date=2010-09-01&rft.volume=10&rft.issue=5&rft.spage=745&rft.epage=762&rft.pages=745-762&rft.issn=1468-2702&rft.eissn=1468-2710&rft_id=info:doi/10.1093/jeg/lbp056&rft_dat=%3Cjstor_proqu%3E26161425%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=750425601&rft_id=info:pmid/&rft_jstor_id=26161425&rfr_iscdi=true