Loading…
Measures of the geographic concentration of industries: improving distance-based methods
We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introduci...
Saved in:
Published in: | Journal of economic geography 2010-09, Vol.10 (5), p.745-762 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313 |
---|---|
cites | cdi_FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313 |
container_end_page | 762 |
container_issue | 5 |
container_start_page | 745 |
container_title | Journal of economic geography |
container_volume | 10 |
creator | Marcon, Eric Puech, Florence |
description | We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introducing a new cumulative function, M, for evaluating the relative geographic concentration and the co-location of industries in a non-homogeneous spatial framework. Secondly, some rigorous comparisons are made with the leading probability density function of Duranton and Overman (2005), Kd. The merits of the simultaneous use of Kd and M is proved, underlining the complementary nature of the results they provide. |
doi_str_mv | 10.1093/jeg/lbp056 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_750425601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26161425</jstor_id><sourcerecordid>26161425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK5evAvFo1B3pm2S1pssfsGKFwVvJUmTbspuU5NU8N_bpeJpXpiHd4aHkEuEW4QqX3W6Xe3kAJQdkQUWrEwzjnD8nyE7JWchdADIClosyOerFmH0OiTOJHGrk1a71otha1WiXK90H72I1vWHve2bMURvdbhL7H7w7tv2bdLYEMVEplIE3SR7HbeuCefkxIhd0Bd_c0k-Hh_e18_p5u3pZX2_SVVR0JgaA5xKLQ0rRSY4kxUtDQCXOWt4kSmKUnOmRIlcIeUSsapQQ24kUM5zzJfkeu6d3vkadYh150bfTydrTqHIKIMDdDNDyrsQvDb14O1e-J8aoT6Iqydx9Sxugq9muAvR-X8yY8hw6st_AayobCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750425601</pqid></control><display><type>article</type><title>Measures of the geographic concentration of industries: improving distance-based methods</title><source>EconLit s plnými texty</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Marcon, Eric ; Puech, Florence</creator><creatorcontrib>Marcon, Eric ; Puech, Florence</creatorcontrib><description>We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introducing a new cumulative function, M, for evaluating the relative geographic concentration and the co-location of industries in a non-homogeneous spatial framework. Secondly, some rigorous comparisons are made with the leading probability density function of Duranton and Overman (2005), Kd. The merits of the simultaneous use of Kd and M is proved, underlining the complementary nature of the results they provide.</description><identifier>ISSN: 1468-2702</identifier><identifier>EISSN: 1468-2710</identifier><identifier>DOI: 10.1093/jeg/lbp056</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Confidence interval ; Density distributions ; Economic activity ; Economic geography ; Geodetic position ; Geography ; Industrial areas ; Industrial concentration ; Industrial plants ; Location of industry ; Null hypothesis ; Overman ; Probability distribution ; Studies</subject><ispartof>Journal of economic geography, 2010-09, Vol.10 (5), p.745-762</ispartof><rights>Oxford University Press 2010</rights><rights>Copyright Oxford Publishing Limited(England) Sep 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313</citedby><cites>FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26161425$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26161425$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Marcon, Eric</creatorcontrib><creatorcontrib>Puech, Florence</creatorcontrib><title>Measures of the geographic concentration of industries: improving distance-based methods</title><title>Journal of economic geography</title><description>We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introducing a new cumulative function, M, for evaluating the relative geographic concentration and the co-location of industries in a non-homogeneous spatial framework. Secondly, some rigorous comparisons are made with the leading probability density function of Duranton and Overman (2005), Kd. The merits of the simultaneous use of Kd and M is proved, underlining the complementary nature of the results they provide.</description><subject>Confidence interval</subject><subject>Density distributions</subject><subject>Economic activity</subject><subject>Economic geography</subject><subject>Geodetic position</subject><subject>Geography</subject><subject>Industrial areas</subject><subject>Industrial concentration</subject><subject>Industrial plants</subject><subject>Location of industry</subject><subject>Null hypothesis</subject><subject>Overman</subject><subject>Probability distribution</subject><subject>Studies</subject><issn>1468-2702</issn><issn>1468-2710</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK5evAvFo1B3pm2S1pssfsGKFwVvJUmTbspuU5NU8N_bpeJpXpiHd4aHkEuEW4QqX3W6Xe3kAJQdkQUWrEwzjnD8nyE7JWchdADIClosyOerFmH0OiTOJHGrk1a71otha1WiXK90H72I1vWHve2bMURvdbhL7H7w7tv2bdLYEMVEplIE3SR7HbeuCefkxIhd0Bd_c0k-Hh_e18_p5u3pZX2_SVVR0JgaA5xKLQ0rRSY4kxUtDQCXOWt4kSmKUnOmRIlcIeUSsapQQ24kUM5zzJfkeu6d3vkadYh150bfTydrTqHIKIMDdDNDyrsQvDb14O1e-J8aoT6Iqydx9Sxugq9muAvR-X8yY8hw6st_AayobCM</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Marcon, Eric</creator><creator>Puech, Florence</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100901</creationdate><title>Measures of the geographic concentration of industries: improving distance-based methods</title><author>Marcon, Eric ; Puech, Florence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Confidence interval</topic><topic>Density distributions</topic><topic>Economic activity</topic><topic>Economic geography</topic><topic>Geodetic position</topic><topic>Geography</topic><topic>Industrial areas</topic><topic>Industrial concentration</topic><topic>Industrial plants</topic><topic>Location of industry</topic><topic>Null hypothesis</topic><topic>Overman</topic><topic>Probability distribution</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcon, Eric</creatorcontrib><creatorcontrib>Puech, Florence</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of economic geography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcon, Eric</au><au>Puech, Florence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measures of the geographic concentration of industries: improving distance-based methods</atitle><jtitle>Journal of economic geography</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>10</volume><issue>5</issue><spage>745</spage><epage>762</epage><pages>745-762</pages><issn>1468-2702</issn><eissn>1468-2710</eissn><abstract>We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introducing a new cumulative function, M, for evaluating the relative geographic concentration and the co-location of industries in a non-homogeneous spatial framework. Secondly, some rigorous comparisons are made with the leading probability density function of Duranton and Overman (2005), Kd. The merits of the simultaneous use of Kd and M is proved, underlining the complementary nature of the results they provide.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/jeg/lbp056</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-2702 |
ispartof | Journal of economic geography, 2010-09, Vol.10 (5), p.745-762 |
issn | 1468-2702 1468-2710 |
language | eng |
recordid | cdi_proquest_journals_750425601 |
source | EconLit s plnými texty; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Confidence interval Density distributions Economic activity Economic geography Geodetic position Geography Industrial areas Industrial concentration Industrial plants Location of industry Null hypothesis Overman Probability distribution Studies |
title | Measures of the geographic concentration of industries: improving distance-based methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measures%20of%20the%20geographic%20concentration%20of%20industries:%20improving%20distance-based%20methods&rft.jtitle=Journal%20of%20economic%20geography&rft.au=Marcon,%20Eric&rft.date=2010-09-01&rft.volume=10&rft.issue=5&rft.spage=745&rft.epage=762&rft.pages=745-762&rft.issn=1468-2702&rft.eissn=1468-2710&rft_id=info:doi/10.1093/jeg/lbp056&rft_dat=%3Cjstor_proqu%3E26161425%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-ff075bebf68a2a76b958f007b36d742c51be76ca817c157b11991e03fb0577313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=750425601&rft_id=info:pmid/&rft_jstor_id=26161425&rfr_iscdi=true |