Loading…

Two-Dimensional Long-Wavelength and Very Long-Wavelength Focal-Plane Arrays at AIM

In recent years AIM has expanded its portfolio of standard infrared (IR) focal-plane arrays in the 3  μ m to 5  μ m (mid-wavelength infrared, MWIR) and 8  μ m to 10  μ m (long-wavelength infrared, LWIR) spectral ranges with two-dimensional IR detectors, sensitive in the 0.9  μ m to 2.5  μ m (short-w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2010-07, Vol.39 (7), p.846-851
Main Authors: Wenisch, J., Eich, D., Hanna, S., Bauer, A., Bitterlich, H., Bruder, M., Mahlein, K.-M., Lutz, H., Wollrab, R., Ziegler, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years AIM has expanded its portfolio of standard infrared (IR) focal-plane arrays in the 3  μ m to 5  μ m (mid-wavelength infrared, MWIR) and 8  μ m to 10  μ m (long-wavelength infrared, LWIR) spectral ranges with two-dimensional IR detectors, sensitive in the 0.9  μ m to 2.5  μ m (short-wavelength infrared, SWIR) and especially in the 10  μ m to 15  μ m (very long-wavelength infrared, VLWIR) spectral ranges. This paper reports on the latest technological advancements that will benefit not only prototype applications for which they are demonstrated but a wide range of AIM products. A reduction of the pixel pitch from 24  μ m to 15  μ m is the result of increasing demands for compact detection modules with reduced weight, size, power consumption, and cost efficiency. Performance characterization for such a reduced-pitch 640 × 512 module in the LWIR (cut-off 10.5  μ m at 67 K) yields mean noise equivalent temperature difference of 32.2 mK and defective pixel rate of only 0.5%. Extending the detection wavelength further into the VLWIR is of major interest for space applications such as the Meteosat Third Generation, which poses challenging requirements for sensor material homogeneity and dark-current density. To meet this requirement, an extrinsic doping approach is utilized on a 256 × 256 mercury cadmium telluride (MCT) focal-plane array with ∼14  μ m cut-off wavelength at 55 K operating temperature, and a dark- current density of about 1 pA/ μ m 2 is demonstrated.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-010-1235-z