Loading…
Mechanisms Affecting the Transition from Shallow to Deep Convection over Land: Inferences from Observations of the Diurnal Cycle Collected at the ARM Southern Great Plains Site
Summertime observations for 11 yr from the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site are used to investigate mechanisms controlling the transition from shallow to deep convection over land. It is found that a more humid environment immediately...
Saved in:
Published in: | Journal of the atmospheric sciences 2010-09, Vol.67 (9), p.2943-2959 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summertime observations for 11 yr from the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site are used to investigate mechanisms controlling the transition from shallow to deep convection over land. It is found that a more humid environment immediately above the boundary layer is present before the start of late afternoon heavy precipitation events. The higher moisture content is brought by wind from the south. Greater boundary layer inhomogeneity in moist static energy, temperature, moisture, and horizontal wind before precipitation begins is correlated to larger rain rates at the initial stage of precipitation. In an examination of afternoon rain statistics, higher relative humidity above the boundary layer is correlated to an earlier onset and longer duration of afternoon precipitation events, whereas greater boundary layer inhomogeneity and atmospheric instability in the 2–4-km layer above the surface are positively correlated to the total rain amount and the maximum rain rate. Although other interpretations may be possible, these observations are consistent with theories for the transition from shallow to deep convection that emphasize the role of a moist lower free troposphere and boundary layer inhomogeneity. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/2010jas3366.1 |