Loading…

A Combined Clustering and Neural Network Approach for Analog Multiple Hard Fault Classification

A new neural network-based fault classification strategy for hard multiple faults in analog circuits is proposed. The magnitude of the harmonics of the Fourier components of the circuit response at different test nodes due to a sinusoidal input signal are first measured or simulated. A selection cri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic testing 1999-06, Vol.14 (3), p.207
Main Authors: El-gamal, Ma, El-yazeed, Mf Abu
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c226t-d1247aebbc1525f0552a6ec19c5acb31343237c7ee3f6563edb6094dd13c4e9b3
cites
container_end_page
container_issue 3
container_start_page 207
container_title Journal of electronic testing
container_volume 14
creator El-gamal, Ma
El-yazeed, Mf Abu
description A new neural network-based fault classification strategy for hard multiple faults in analog circuits is proposed. The magnitude of the harmonics of the Fourier components of the circuit response at different test nodes due to a sinusoidal input signal are first measured or simulated. A selection criterion for determining the best components that describe the circuit behaviour under fault-free (nominal) and fault situations is presented. An algorithm that estimates the overlap between different faults in the measurement space is also introduced. The learning vector quantization neural network is then effectively trained to classify circuit faults. Performance measures reveal very high classification accuracy in both training and testing stages. Two different examples, which demonstrate the proposed strategy, are described.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1008353901973
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_757077989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158096921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-d1247aebbc1525f0552a6ec19c5acb31343237c7ee3f6563edb6094dd13c4e9b3</originalsourceid><addsrcrecordid>eNotjktLxDAYRYMoWEfXboP7apKvaRp3pTiOMOpG1yWvjhljU5MW_74FXR3uXRwOQteU3FLC4K69p4Q0wEESKgWcoIJyASURTJyigkgGZUNFdY4ucj4Ssv68LlDf4i5-aT86i7uw5NklPx6wGi1-cUtSYcX8E9MnbqcpRWU-8BATbkcV4gE_L2H2U3B4p5LFW7XO1aJy9oM3avZxvERngwrZXf1zg963D2_drty_Pj517b40jNVzaSmrhHJaG8oZHwjnTNXOUGm4MhooVMBAGOEcDDWvwVldE1lZS8FUTmrYoJs_7xr5vbg898e4pLUy94ILIoRsJPwCOZtV5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757077989</pqid></control><display><type>article</type><title>A Combined Clustering and Neural Network Approach for Analog Multiple Hard Fault Classification</title><source>Springer Link</source><creator>El-gamal, Ma ; El-yazeed, Mf Abu</creator><creatorcontrib>El-gamal, Ma ; El-yazeed, Mf Abu</creatorcontrib><description>A new neural network-based fault classification strategy for hard multiple faults in analog circuits is proposed. The magnitude of the harmonics of the Fourier components of the circuit response at different test nodes due to a sinusoidal input signal are first measured or simulated. A selection criterion for determining the best components that describe the circuit behaviour under fault-free (nominal) and fault situations is presented. An algorithm that estimates the overlap between different faults in the measurement space is also introduced. The learning vector quantization neural network is then effectively trained to classify circuit faults. Performance measures reveal very high classification accuracy in both training and testing stages. Two different examples, which demonstrate the proposed strategy, are described.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0923-8174</identifier><identifier>EISSN: 1573-0727</identifier><identifier>DOI: 10.1023/A:1008353901973</identifier><language>eng</language><publisher>Boston: Springer Nature B.V</publisher><subject>Neural networks ; Studies</subject><ispartof>Journal of electronic testing, 1999-06, Vol.14 (3), p.207</ispartof><rights>Kluwer Academic Publishers 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-d1247aebbc1525f0552a6ec19c5acb31343237c7ee3f6563edb6094dd13c4e9b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>El-gamal, Ma</creatorcontrib><creatorcontrib>El-yazeed, Mf Abu</creatorcontrib><title>A Combined Clustering and Neural Network Approach for Analog Multiple Hard Fault Classification</title><title>Journal of electronic testing</title><description>A new neural network-based fault classification strategy for hard multiple faults in analog circuits is proposed. The magnitude of the harmonics of the Fourier components of the circuit response at different test nodes due to a sinusoidal input signal are first measured or simulated. A selection criterion for determining the best components that describe the circuit behaviour under fault-free (nominal) and fault situations is presented. An algorithm that estimates the overlap between different faults in the measurement space is also introduced. The learning vector quantization neural network is then effectively trained to classify circuit faults. Performance measures reveal very high classification accuracy in both training and testing stages. Two different examples, which demonstrate the proposed strategy, are described.[PUBLICATION ABSTRACT]</description><subject>Neural networks</subject><subject>Studies</subject><issn>0923-8174</issn><issn>1573-0727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotjktLxDAYRYMoWEfXboP7apKvaRp3pTiOMOpG1yWvjhljU5MW_74FXR3uXRwOQteU3FLC4K69p4Q0wEESKgWcoIJyASURTJyigkgGZUNFdY4ucj4Ssv68LlDf4i5-aT86i7uw5NklPx6wGi1-cUtSYcX8E9MnbqcpRWU-8BATbkcV4gE_L2H2U3B4p5LFW7XO1aJy9oM3avZxvERngwrZXf1zg963D2_drty_Pj517b40jNVzaSmrhHJaG8oZHwjnTNXOUGm4MhooVMBAGOEcDDWvwVldE1lZS8FUTmrYoJs_7xr5vbg898e4pLUy94ILIoRsJPwCOZtV5Q</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>El-gamal, Ma</creator><creator>El-yazeed, Mf Abu</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>19990601</creationdate><title>A Combined Clustering and Neural Network Approach for Analog Multiple Hard Fault Classification</title><author>El-gamal, Ma ; El-yazeed, Mf Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-d1247aebbc1525f0552a6ec19c5acb31343237c7ee3f6563edb6094dd13c4e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Neural networks</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-gamal, Ma</creatorcontrib><creatorcontrib>El-yazeed, Mf Abu</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of electronic testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-gamal, Ma</au><au>El-yazeed, Mf Abu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Combined Clustering and Neural Network Approach for Analog Multiple Hard Fault Classification</atitle><jtitle>Journal of electronic testing</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>14</volume><issue>3</issue><spage>207</spage><pages>207-</pages><issn>0923-8174</issn><eissn>1573-0727</eissn><abstract>A new neural network-based fault classification strategy for hard multiple faults in analog circuits is proposed. The magnitude of the harmonics of the Fourier components of the circuit response at different test nodes due to a sinusoidal input signal are first measured or simulated. A selection criterion for determining the best components that describe the circuit behaviour under fault-free (nominal) and fault situations is presented. An algorithm that estimates the overlap between different faults in the measurement space is also introduced. The learning vector quantization neural network is then effectively trained to classify circuit faults. Performance measures reveal very high classification accuracy in both training and testing stages. Two different examples, which demonstrate the proposed strategy, are described.[PUBLICATION ABSTRACT]</abstract><cop>Boston</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008353901973</doi></addata></record>
fulltext fulltext
identifier ISSN: 0923-8174
ispartof Journal of electronic testing, 1999-06, Vol.14 (3), p.207
issn 0923-8174
1573-0727
language eng
recordid cdi_proquest_journals_757077989
source Springer Link
subjects Neural networks
Studies
title A Combined Clustering and Neural Network Approach for Analog Multiple Hard Fault Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Combined%20Clustering%20and%20Neural%20Network%20Approach%20for%20Analog%20Multiple%20Hard%20Fault%20Classification&rft.jtitle=Journal%20of%20electronic%20testing&rft.au=El-gamal,%20Ma&rft.date=1999-06-01&rft.volume=14&rft.issue=3&rft.spage=207&rft.pages=207-&rft.issn=0923-8174&rft.eissn=1573-0727&rft_id=info:doi/10.1023/A:1008353901973&rft_dat=%3Cproquest%3E2158096921%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c226t-d1247aebbc1525f0552a6ec19c5acb31343237c7ee3f6563edb6094dd13c4e9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=757077989&rft_id=info:pmid/&rfr_iscdi=true