Loading…

Detection of Delay Faults in Memory Address Decoders

In this paper we present an efficient test concept for detection of delay faults in memory address decoders based on the march test tactic. The proposed Transition Sequence Generator (TSG) generates an optimal transition sequence for sensitization of the delay faults in address decoders by Hayes...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic testing 2000-08, Vol.16 (4), p.381
Main Author: Gizdarski, Emil
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c226t-c803745fa436cea28fc37dae70d329187ca202f85547509eb77490cdf74d3bda3
cites
container_end_page
container_issue 4
container_start_page 381
container_title Journal of electronic testing
container_volume 16
creator Gizdarski, Emil
description In this paper we present an efficient test concept for detection of delay faults in memory address decoders based on the march test tactic. The proposed Transition Sequence Generator (TSG) generates an optimal transition sequence for sensitization of the delay faults in address decoders by Hayes's transformation on a reflected Gray code. It can be used for parallel Built-In Self-Testing (BIST) of high-density RAMs. We also present an efficient Design For Test (DFT) approach for immediate detection of the effects of the delay faults in the address decoders which does not change memory access time. It requires extra logic to be attached to the outputs of the address decoders. This DFT approach can be used to increase memory testability for both on-line and off-line testing of single- and multi-port RAMs.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1008322103755
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_757092588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158248661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-c803745fa436cea28fc37dae70d329187ca202f85547509eb77490cdf74d3bda3</originalsourceid><addsrcrecordid>eNotj0FLAzEUhIMouFbPXoP31Ze8ZF_W29JaFSpe9FzS5AVa1o1utof-exf0NDAD38wIcavgXoHGh-5RATjUWgGStWeiUpawBtJ0LipoNdZOkbkUV6UcAGbfNpUwK544TPs8yJzkint_kmt_7Kci94N84688nmQX48ilzHHIkcdyLS6S7wvf_OtCfK6fPpYv9eb9-XXZbeqgdTPVwc1LjE3eYBPYa5cCUvRMEFG3ylHwGnRy1hqy0PKOyLQQYiITcRc9LsTdH_d7zD9HLtP2kI_jMFduydJ8yTqHv9KaRZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757092588</pqid></control><display><type>article</type><title>Detection of Delay Faults in Memory Address Decoders</title><source>Springer Nature</source><creator>Gizdarski, Emil</creator><creatorcontrib>Gizdarski, Emil</creatorcontrib><description>In this paper we present an efficient test concept for detection of delay faults in memory address decoders based on the march test tactic. The proposed Transition Sequence Generator (TSG) generates an optimal transition sequence for sensitization of the delay faults in address decoders by Hayes's transformation on a reflected Gray code. It can be used for parallel Built-In Self-Testing (BIST) of high-density RAMs. We also present an efficient Design For Test (DFT) approach for immediate detection of the effects of the delay faults in the address decoders which does not change memory access time. It requires extra logic to be attached to the outputs of the address decoders. This DFT approach can be used to increase memory testability for both on-line and off-line testing of single- and multi-port RAMs.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0923-8174</identifier><identifier>EISSN: 1573-0727</identifier><identifier>DOI: 10.1023/A:1008322103755</identifier><language>eng</language><publisher>Boston: Springer Nature B.V</publisher><subject>Computer memory ; Fault diagnosis ; Tests</subject><ispartof>Journal of electronic testing, 2000-08, Vol.16 (4), p.381</ispartof><rights>Kluwer Academic Publishers 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-c803745fa436cea28fc37dae70d329187ca202f85547509eb77490cdf74d3bda3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gizdarski, Emil</creatorcontrib><title>Detection of Delay Faults in Memory Address Decoders</title><title>Journal of electronic testing</title><description>In this paper we present an efficient test concept for detection of delay faults in memory address decoders based on the march test tactic. The proposed Transition Sequence Generator (TSG) generates an optimal transition sequence for sensitization of the delay faults in address decoders by Hayes's transformation on a reflected Gray code. It can be used for parallel Built-In Self-Testing (BIST) of high-density RAMs. We also present an efficient Design For Test (DFT) approach for immediate detection of the effects of the delay faults in the address decoders which does not change memory access time. It requires extra logic to be attached to the outputs of the address decoders. This DFT approach can be used to increase memory testability for both on-line and off-line testing of single- and multi-port RAMs.[PUBLICATION ABSTRACT]</description><subject>Computer memory</subject><subject>Fault diagnosis</subject><subject>Tests</subject><issn>0923-8174</issn><issn>1573-0727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNotj0FLAzEUhIMouFbPXoP31Ze8ZF_W29JaFSpe9FzS5AVa1o1utof-exf0NDAD38wIcavgXoHGh-5RATjUWgGStWeiUpawBtJ0LipoNdZOkbkUV6UcAGbfNpUwK544TPs8yJzkint_kmt_7Kci94N84688nmQX48ilzHHIkcdyLS6S7wvf_OtCfK6fPpYv9eb9-XXZbeqgdTPVwc1LjE3eYBPYa5cCUvRMEFG3ylHwGnRy1hqy0PKOyLQQYiITcRc9LsTdH_d7zD9HLtP2kI_jMFduydJ8yTqHv9KaRZI</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Gizdarski, Emil</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20000801</creationdate><title>Detection of Delay Faults in Memory Address Decoders</title><author>Gizdarski, Emil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-c803745fa436cea28fc37dae70d329187ca202f85547509eb77490cdf74d3bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computer memory</topic><topic>Fault diagnosis</topic><topic>Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gizdarski, Emil</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of electronic testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gizdarski, Emil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Delay Faults in Memory Address Decoders</atitle><jtitle>Journal of electronic testing</jtitle><date>2000-08-01</date><risdate>2000</risdate><volume>16</volume><issue>4</issue><spage>381</spage><pages>381-</pages><issn>0923-8174</issn><eissn>1573-0727</eissn><abstract>In this paper we present an efficient test concept for detection of delay faults in memory address decoders based on the march test tactic. The proposed Transition Sequence Generator (TSG) generates an optimal transition sequence for sensitization of the delay faults in address decoders by Hayes's transformation on a reflected Gray code. It can be used for parallel Built-In Self-Testing (BIST) of high-density RAMs. We also present an efficient Design For Test (DFT) approach for immediate detection of the effects of the delay faults in the address decoders which does not change memory access time. It requires extra logic to be attached to the outputs of the address decoders. This DFT approach can be used to increase memory testability for both on-line and off-line testing of single- and multi-port RAMs.[PUBLICATION ABSTRACT]</abstract><cop>Boston</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008322103755</doi></addata></record>
fulltext fulltext
identifier ISSN: 0923-8174
ispartof Journal of electronic testing, 2000-08, Vol.16 (4), p.381
issn 0923-8174
1573-0727
language eng
recordid cdi_proquest_journals_757092588
source Springer Nature
subjects Computer memory
Fault diagnosis
Tests
title Detection of Delay Faults in Memory Address Decoders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Delay%20Faults%20in%20Memory%20Address%20Decoders&rft.jtitle=Journal%20of%20electronic%20testing&rft.au=Gizdarski,%20Emil&rft.date=2000-08-01&rft.volume=16&rft.issue=4&rft.spage=381&rft.pages=381-&rft.issn=0923-8174&rft.eissn=1573-0727&rft_id=info:doi/10.1023/A:1008322103755&rft_dat=%3Cproquest%3E2158248661%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c226t-c803745fa436cea28fc37dae70d329187ca202f85547509eb77490cdf74d3bda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=757092588&rft_id=info:pmid/&rfr_iscdi=true