Loading…

Effects of toxic environmental contaminants on voltage-gated calcium channel function: from past to present

Voltage-gated Ca2+ channels are targets of the number of naturally occurring toxins, therapeutic agents as well as environmental toxicants. Because of similarities of their chemical structure to Ca2+ in terms of hydrated ionic radius, electron orbital configuration, or other chemical properties, pol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioenergetics and biomembranes 2003-12, Vol.35 (6), p.507-532
Main Author: Atchison, William D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Voltage-gated Ca2+ channels are targets of the number of naturally occurring toxins, therapeutic agents as well as environmental toxicants. Because of similarities of their chemical structure to Ca2+ in terms of hydrated ionic radius, electron orbital configuration, or other chemical properties, polyvalent cations from aluminum to zinc variously interact with multiple types of voltage-gated Ca2+ channels. These nonphysiological metals have been used to study the structure and function of the Ca2+ channel, especially its permeability characteristics. Two nonphysiological cations, Pb2+ and Hg2+, as well as their organic derivatives, are environmental neurotoxicants which are highly potent Ca2+ channel blockers. These metals also apparently gain intracellular access in part by permeating through Ca2+ channels. In this review the history of Ca2+ channel block produced by Pb2+ and Hg2+ as well as other nonphysiological cations is traced. In particular the characteristics of Ca2+ channel block induced by these environmental neurotoxic metals and the consequences of this action for neuronal function are discussed.
ISSN:0145-479X
1573-6881
DOI:10.1023/B:JOBB.0000008023.11211.13