Loading…

Time-Constrained Keyframe Selection Technique

In accessing large collections of digitized videos, it is often difficult to find both the appropriate video file and the portion of the video that is of interest. This paper describes a novel technique for determining keyframes that are different from each other and provide a good representation of...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2000-08, Vol.11 (3), p.347
Main Authors: Girgensohn, Andreas, Boreczky, John
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c226t-ad69ee66f497be20b0a12499d54355e663989ba11f343378f4254a872a8095ee3
cites
container_end_page
container_issue 3
container_start_page 347
container_title Multimedia tools and applications
container_volume 11
creator Girgensohn, Andreas
Boreczky, John
description In accessing large collections of digitized videos, it is often difficult to find both the appropriate video file and the portion of the video that is of interest. This paper describes a novel technique for determining keyframes that are different from each other and provide a good representation of the whole video. We use keyframes to distinguish videos from each other, to summarize videos, and to provide access points into them. The technique can determine any number of keyframes by clustering the frames in a video and by selecting a representative frame from each cluster. Temporal constraints are used to filter out some clusters and to determine the representative frame for a cluster. Desirable visual features can be emphasized in the set of keyframes. An application for browsing a collection of videos makes use of the keyframes to support skimming and to provide visual summaries.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1009630817712
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_757126557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158591401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-ad69ee66f497be20b0a12499d54355e663989ba11f343378f4254a872a8095ee3</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQdRsLau3Qb3o_fOe9yV4AsLLhrXZZLcwZR2opl04b93QFfnwIHz8TF2g3CHIOT9-gEBvJHg0FoUZ2yB2kpurcDz0qUDbjXgJbvKeQ-ARgu1YLwZjsTrMeV5CkOivnqjnziFI1VbOlA3D2OqGuo-0_B9ohW7iOGQ6fo_l-zj6bGpX_jm_fm1Xm94J4SZeeiNJzImKm9bEtBCQKG877WSWpdBeufbgBilktK6qIRWwVkRHHhNJJfs9u_3axoLNs-7_XiaUkHurC5yRhe1X-IsQsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757126557</pqid></control><display><type>article</type><title>Time-Constrained Keyframe Selection Technique</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Girgensohn, Andreas ; Boreczky, John</creator><creatorcontrib>Girgensohn, Andreas ; Boreczky, John</creatorcontrib><description>In accessing large collections of digitized videos, it is often difficult to find both the appropriate video file and the portion of the video that is of interest. This paper describes a novel technique for determining keyframes that are different from each other and provide a good representation of the whole video. We use keyframes to distinguish videos from each other, to summarize videos, and to provide access points into them. The technique can determine any number of keyframes by clustering the frames in a video and by selecting a representative frame from each cluster. Temporal constraints are used to filter out some clusters and to determine the representative frame for a cluster. Desirable visual features can be emphasized in the set of keyframes. An application for browsing a collection of videos makes use of the keyframes to support skimming and to provide visual summaries.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1023/A:1009630817712</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Digital libraries ; Studies ; Video</subject><ispartof>Multimedia tools and applications, 2000-08, Vol.11 (3), p.347</ispartof><rights>Kluwer Academic Publishers 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-ad69ee66f497be20b0a12499d54355e663989ba11f343378f4254a872a8095ee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/757126557/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/757126557?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Girgensohn, Andreas</creatorcontrib><creatorcontrib>Boreczky, John</creatorcontrib><title>Time-Constrained Keyframe Selection Technique</title><title>Multimedia tools and applications</title><description>In accessing large collections of digitized videos, it is often difficult to find both the appropriate video file and the portion of the video that is of interest. This paper describes a novel technique for determining keyframes that are different from each other and provide a good representation of the whole video. We use keyframes to distinguish videos from each other, to summarize videos, and to provide access points into them. The technique can determine any number of keyframes by clustering the frames in a video and by selecting a representative frame from each cluster. Temporal constraints are used to filter out some clusters and to determine the representative frame for a cluster. Desirable visual features can be emphasized in the set of keyframes. An application for browsing a collection of videos makes use of the keyframes to support skimming and to provide visual summaries.[PUBLICATION ABSTRACT]</description><subject>Digital libraries</subject><subject>Studies</subject><subject>Video</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotj0tLw0AUhQdRsLau3Qb3o_fOe9yV4AsLLhrXZZLcwZR2opl04b93QFfnwIHz8TF2g3CHIOT9-gEBvJHg0FoUZ2yB2kpurcDz0qUDbjXgJbvKeQ-ARgu1YLwZjsTrMeV5CkOivnqjnziFI1VbOlA3D2OqGuo-0_B9ohW7iOGQ6fo_l-zj6bGpX_jm_fm1Xm94J4SZeeiNJzImKm9bEtBCQKG877WSWpdBeufbgBilktK6qIRWwVkRHHhNJJfs9u_3axoLNs-7_XiaUkHurC5yRhe1X-IsQsw</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Girgensohn, Andreas</creator><creator>Boreczky, John</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20000801</creationdate><title>Time-Constrained Keyframe Selection Technique</title><author>Girgensohn, Andreas ; Boreczky, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-ad69ee66f497be20b0a12499d54355e663989ba11f343378f4254a872a8095ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Digital libraries</topic><topic>Studies</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girgensohn, Andreas</creatorcontrib><creatorcontrib>Boreczky, John</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girgensohn, Andreas</au><au>Boreczky, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Constrained Keyframe Selection Technique</atitle><jtitle>Multimedia tools and applications</jtitle><date>2000-08-01</date><risdate>2000</risdate><volume>11</volume><issue>3</issue><spage>347</spage><pages>347-</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In accessing large collections of digitized videos, it is often difficult to find both the appropriate video file and the portion of the video that is of interest. This paper describes a novel technique for determining keyframes that are different from each other and provide a good representation of the whole video. We use keyframes to distinguish videos from each other, to summarize videos, and to provide access points into them. The technique can determine any number of keyframes by clustering the frames in a video and by selecting a representative frame from each cluster. Temporal constraints are used to filter out some clusters and to determine the representative frame for a cluster. Desirable visual features can be emphasized in the set of keyframes. An application for browsing a collection of videos makes use of the keyframes to support skimming and to provide visual summaries.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1009630817712</doi></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2000-08, Vol.11 (3), p.347
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_757126557
source ABI/INFORM Global; Springer Nature
subjects Digital libraries
Studies
Video
title Time-Constrained Keyframe Selection Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Constrained%20Keyframe%20Selection%20Technique&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Girgensohn,%20Andreas&rft.date=2000-08-01&rft.volume=11&rft.issue=3&rft.spage=347&rft.pages=347-&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1023/A:1009630817712&rft_dat=%3Cproquest%3E2158591401%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c226t-ad69ee66f497be20b0a12499d54355e663989ba11f343378f4254a872a8095ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=757126557&rft_id=info:pmid/&rfr_iscdi=true