Loading…

Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps

The in situ intermetallic compound (IMC) growth in Cu pillar/Sn bumps was investigated by isothermal annealing at 120°C, 150°C, and 180°C using an in situ scanning electron microscope. Only the Cu 6 Sn 5 phase formed at the interface between the Cu pillar and Sn during the reflow process. The Cu 3 S...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2009-11, Vol.38 (11), p.2228-2233
Main Authors: Lim, Gi-Tae, Kim, Byoung-Joon, Lee, Kiwook, Kim, Jaedong, Joo, Young-Chang, Park, Young-Bae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-964b46bae2e75c84d9339c0474134ee9f000fd173bef79098b03279d4659bcd43
cites cdi_FETCH-LOGICAL-c411t-964b46bae2e75c84d9339c0474134ee9f000fd173bef79098b03279d4659bcd43
container_end_page 2233
container_issue 11
container_start_page 2228
container_title Journal of electronic materials
container_volume 38
creator Lim, Gi-Tae
Kim, Byoung-Joon
Lee, Kiwook
Kim, Jaedong
Joo, Young-Chang
Park, Young-Bae
description The in situ intermetallic compound (IMC) growth in Cu pillar/Sn bumps was investigated by isothermal annealing at 120°C, 150°C, and 180°C using an in situ scanning electron microscope. Only the Cu 6 Sn 5 phase formed at the interface between the Cu pillar and Sn during the reflow process. The Cu 3 Sn phase formed and grew at the interfaces between the Cu pillar and Cu 6 Sn 5 with increased annealing time. Total (Cu 6 Sn 5  + Cu 3 Sn) IMC thickness increased linearly with the square root of annealing time. The growth slopes of total IMC decreased after 240 h at 150°C and 60 h at 180°C, due to the fact that the Cu 6 Sn 5 phase transforms to the Cu 3 Sn phase when all of the remaining Sn phase in the Cu pillar bump is completely exhausted. The complete consumption time of the Sn phase at 180°C was shorter than that at 150°C. The apparent activation energy for total IMC growth was determined to be 0.57 eV.
doi_str_mv 10.1007/s11664-009-0922-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_761079122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175430161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-964b46bae2e75c84d9339c0474134ee9f000fd173bef79098b03279d4659bcd43</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C4ILseek2QuWWrRWiwoWsFdyGQSnTI3kxnEt3dKi65cncV_OT8fIecIVwiQzgJikogIQEYgGYvggEwwFjzCLHk7JBPgCUYx4_ExOQlhA4AxZjghz2tbd9brfvCW3jpnTU_bhi6b3vra9rqqSkPnbd21Q1PQhW-_-g_6UDa2L02graPzgT6VVaX97KWhN0PdhVNy5HQV7Nn-Tsnr3e16fh-tHhfL-fUqMgKxj2QicpHk2jKbxiYTheRcGhCpQC6slQ4AXIEpz61LJcgsB85SWYgklrkpBJ-Si11v59vPwYZebdrBN-NLlSYIqUTGRhPuTMa3IXjrVOfLWvtvhaC25NSOnBrJqS05BWPmcl-sg9GV87oxZfgNMoYik2w7gO18YZSad-v_Bvxf_gNueHyO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>761079122</pqid></control><display><type>article</type><title>Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps</title><source>Springer Link</source><creator>Lim, Gi-Tae ; Kim, Byoung-Joon ; Lee, Kiwook ; Kim, Jaedong ; Joo, Young-Chang ; Park, Young-Bae</creator><creatorcontrib>Lim, Gi-Tae ; Kim, Byoung-Joon ; Lee, Kiwook ; Kim, Jaedong ; Joo, Young-Chang ; Park, Young-Bae</creatorcontrib><description>The in situ intermetallic compound (IMC) growth in Cu pillar/Sn bumps was investigated by isothermal annealing at 120°C, 150°C, and 180°C using an in situ scanning electron microscope. Only the Cu 6 Sn 5 phase formed at the interface between the Cu pillar and Sn during the reflow process. The Cu 3 Sn phase formed and grew at the interfaces between the Cu pillar and Cu 6 Sn 5 with increased annealing time. Total (Cu 6 Sn 5  + Cu 3 Sn) IMC thickness increased linearly with the square root of annealing time. The growth slopes of total IMC decreased after 240 h at 150°C and 60 h at 180°C, due to the fact that the Cu 6 Sn 5 phase transforms to the Cu 3 Sn phase when all of the remaining Sn phase in the Cu pillar bump is completely exhausted. The complete consumption time of the Sn phase at 180°C was shorter than that at 150°C. The apparent activation energy for total IMC growth was determined to be 0.57 eV.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-009-0922-0</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cross-disciplinary physics: materials science; rheology ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Intermetallic compounds ; Kinetics ; Materials Science ; Methods of crystal growth; physics of crystal growth ; Optical and Electronic Materials ; Physics ; Solid State Physics ; Temperature ; Temperature effects ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of electronic materials, 2009-11, Vol.38 (11), p.2228-2233</ispartof><rights>TMS 2009</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Nov 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-964b46bae2e75c84d9339c0474134ee9f000fd173bef79098b03279d4659bcd43</citedby><cites>FETCH-LOGICAL-c411t-964b46bae2e75c84d9339c0474134ee9f000fd173bef79098b03279d4659bcd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22148924$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Gi-Tae</creatorcontrib><creatorcontrib>Kim, Byoung-Joon</creatorcontrib><creatorcontrib>Lee, Kiwook</creatorcontrib><creatorcontrib>Kim, Jaedong</creatorcontrib><creatorcontrib>Joo, Young-Chang</creatorcontrib><creatorcontrib>Park, Young-Bae</creatorcontrib><title>Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The in situ intermetallic compound (IMC) growth in Cu pillar/Sn bumps was investigated by isothermal annealing at 120°C, 150°C, and 180°C using an in situ scanning electron microscope. Only the Cu 6 Sn 5 phase formed at the interface between the Cu pillar and Sn during the reflow process. The Cu 3 Sn phase formed and grew at the interfaces between the Cu pillar and Cu 6 Sn 5 with increased annealing time. Total (Cu 6 Sn 5  + Cu 3 Sn) IMC thickness increased linearly with the square root of annealing time. The growth slopes of total IMC decreased after 240 h at 150°C and 60 h at 180°C, due to the fact that the Cu 6 Sn 5 phase transforms to the Cu 3 Sn phase when all of the remaining Sn phase in the Cu pillar bump is completely exhausted. The complete consumption time of the Sn phase at 180°C was shorter than that at 150°C. The apparent activation energy for total IMC growth was determined to be 0.57 eV.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Intermetallic compounds</subject><subject>Kinetics</subject><subject>Materials Science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Solid State Physics</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C4ILseek2QuWWrRWiwoWsFdyGQSnTI3kxnEt3dKi65cncV_OT8fIecIVwiQzgJikogIQEYgGYvggEwwFjzCLHk7JBPgCUYx4_ExOQlhA4AxZjghz2tbd9brfvCW3jpnTU_bhi6b3vra9rqqSkPnbd21Q1PQhW-_-g_6UDa2L02graPzgT6VVaX97KWhN0PdhVNy5HQV7Nn-Tsnr3e16fh-tHhfL-fUqMgKxj2QicpHk2jKbxiYTheRcGhCpQC6slQ4AXIEpz61LJcgsB85SWYgklrkpBJ-Si11v59vPwYZebdrBN-NLlSYIqUTGRhPuTMa3IXjrVOfLWvtvhaC25NSOnBrJqS05BWPmcl-sg9GV87oxZfgNMoYik2w7gO18YZSad-v_Bvxf_gNueHyO</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Lim, Gi-Tae</creator><creator>Kim, Byoung-Joon</creator><creator>Lee, Kiwook</creator><creator>Kim, Jaedong</creator><creator>Joo, Young-Chang</creator><creator>Park, Young-Bae</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20091101</creationdate><title>Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps</title><author>Lim, Gi-Tae ; Kim, Byoung-Joon ; Lee, Kiwook ; Kim, Jaedong ; Joo, Young-Chang ; Park, Young-Bae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-964b46bae2e75c84d9339c0474134ee9f000fd173bef79098b03279d4659bcd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Intermetallic compounds</topic><topic>Kinetics</topic><topic>Materials Science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Solid State Physics</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Gi-Tae</creatorcontrib><creatorcontrib>Kim, Byoung-Joon</creatorcontrib><creatorcontrib>Lee, Kiwook</creatorcontrib><creatorcontrib>Kim, Jaedong</creatorcontrib><creatorcontrib>Joo, Young-Chang</creatorcontrib><creatorcontrib>Park, Young-Bae</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Gi-Tae</au><au>Kim, Byoung-Joon</au><au>Lee, Kiwook</au><au>Kim, Jaedong</au><au>Joo, Young-Chang</au><au>Park, Young-Bae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>38</volume><issue>11</issue><spage>2228</spage><epage>2233</epage><pages>2228-2233</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>The in situ intermetallic compound (IMC) growth in Cu pillar/Sn bumps was investigated by isothermal annealing at 120°C, 150°C, and 180°C using an in situ scanning electron microscope. Only the Cu 6 Sn 5 phase formed at the interface between the Cu pillar and Sn during the reflow process. The Cu 3 Sn phase formed and grew at the interfaces between the Cu pillar and Cu 6 Sn 5 with increased annealing time. Total (Cu 6 Sn 5  + Cu 3 Sn) IMC thickness increased linearly with the square root of annealing time. The growth slopes of total IMC decreased after 240 h at 150°C and 60 h at 180°C, due to the fact that the Cu 6 Sn 5 phase transforms to the Cu 3 Sn phase when all of the remaining Sn phase in the Cu pillar bump is completely exhausted. The complete consumption time of the Sn phase at 180°C was shorter than that at 150°C. The apparent activation energy for total IMC growth was determined to be 0.57 eV.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-009-0922-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2009-11, Vol.38 (11), p.2228-2233
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_761079122
source Springer Link
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Cross-disciplinary physics: materials science
rheology
Electronics and Microelectronics
Exact sciences and technology
Instrumentation
Intermetallic compounds
Kinetics
Materials Science
Methods of crystal growth
physics of crystal growth
Optical and Electronic Materials
Physics
Solid State Physics
Temperature
Temperature effects
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Effect%20on%20Intermetallic%20Compound%20Growth%20Kinetics%20of%20Cu%20Pillar/Sn%20Bumps&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lim,%20Gi-Tae&rft.date=2009-11-01&rft.volume=38&rft.issue=11&rft.spage=2228&rft.epage=2233&rft.pages=2228-2233&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-009-0922-0&rft_dat=%3Cproquest_cross%3E2175430161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-964b46bae2e75c84d9339c0474134ee9f000fd173bef79098b03279d4659bcd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=761079122&rft_id=info:pmid/&rfr_iscdi=true