Loading…

The influence of flushing rates, terrestrial input and low salmon escapement densities on paleolimnological reconstructions of sockeye salmon (Oncorhynchus nerka) nutrient dynamics in Alaska and British Columbia

Recent advances in paleolimnology have enabled reconstructions of past sockeye salmon (Oncorhynchus nerka) dynamics using a number of proxy-indicators, including diatoms and stable isotopes. Thus far, studies have focused on nursery lakes with high escapement densities and low flushing rates, ensuri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of paleolimnology 2004-10, Vol.32 (3), p.255-271
Main Authors: Holtham, Anita J., Gregory-Eaves, Irene, Pellatt, Marlow G., Selbie, Daniel T., Stewart, Laura, Finney, Bruce P., Smol, John P.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advances in paleolimnology have enabled reconstructions of past sockeye salmon (Oncorhynchus nerka) dynamics using a number of proxy-indicators, including diatoms and stable isotopes. Thus far, studies have focused on nursery lakes with high escapement densities and low flushing rates, ensuring that levels of salmon-derived nutrients (SDN) are high and are incorporated into the food chain. This study examines three oligotrophic sockeye salmon nursery lakes in Alaska (Afognak and Saltery lakes) and British Columbia (Hobiton Lake) to determine if sockeye salmon populations can be tracked in nursery systems with lower salmon escapement densities, higher flushing rates and/or higher terrestrial input. We adopted a multi-proxy approach using diatoms, stable isotopes (δ^sup 15^N), organic carbon to nitrogen (C/N) ratios and pollen to draw inferences from ^sup 210^Pb-dated sediment cores. δ^sup 15^N showed little response to historic variation in sockeye salmon populations, even in Saltery Lake, which has a very high escapement density, and in Afognak Lake, in which average escapement is known to have increased. Dilution effects due to high flushing rates were likely partly responsible for the low δ^sup 15^N and minimal variation throughout the cores, although very high terrestrial input in Hobiton Lake also dampened the salmon signal. Small changes in diatom species assemblages, however, were evident in all three lakes and may be in response to fluctuating loads of salmon-derived nutrients. Most notably, increases of mesotrophic diatom taxa, such as Asterionella formosa and Aulacoseira subarctica, corresponded to increased salmon production in Alaskan lakes as a result of enhancement (fertilization) activities and climatic changes. Changes in the relative abundance of Cyclotella pseudostelligera in Hobiton Lake may also be in response to a significant decline in sockeye salmon populations off the west coast of Vancouver Island in the 1970s. Other factors, however, such as logging and lake fertilization may also have influenced diatom species composition. These results confirm that, while salmon-derived nutrients may be of key importance in juvenile salmonid development in some lakes, this may not be the case in all systems, especially those in which flushing rates are high. Further, in these systems, diatom communities appear to respond more sensitively to fluctuations in salmon populations (and therefore nutrients) than stable isotope methods, provided t
ISSN:0921-2728
1573-0417
DOI:10.1023/B:JOPL.0000042998.22164.ca