Loading…
Partially observable Markov decision model for the treatment of early Prostate Cancer
Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In...
Saved in:
Published in: | Opsearch 2010-06, Vol.47 (2), p.105-117 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3 |
container_end_page | 117 |
container_issue | 2 |
container_start_page | 105 |
container_title | Opsearch |
container_volume | 47 |
creator | Goulionis, John E. Koutsiumaris, B. K. |
description | Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In this paper we applied a Partially observable Markov decision processes (POMDP) formulation to the problem of treating patients with Early prostate Cancer (EPC). The purpose of this paper is to address the challenge of effectively managing Early Prostate cancer therapies. To solve this problem we used a procedure that take advantage of special problem structure, and we provide optimal policies to stochastic and dynamic decisions naturally arise in finding optimal disease treatment plans. |
doi_str_mv | 10.1007/s12597-010-0015-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_822074292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2228525621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gs9sDZcWJnRBFfUhEd6Gw5yRlS0rjYbqX-e1wFiYnpbnie904vIdcMbhmAvAuMF5XMgEEGwIoMTsgMKpmWnMNp2iGHLFdKnpOLENYApQAlZmS1ND72ZhgO1DUB_d40A9JX47_cnnbY9qF3I924DgdqnafxE2n0aOIGx0idpWh8cpfehWgi0tqMLfpLcmbNEPDqd87J6vHhvX7OFm9PL_X9ImtzUcasahurAAtZSs6UtNxiyXmRy6oQSoii4KyrmJV5JSRLoLFlUzJetta2slOYz8nNlLv17nuHIeq12_kxndSKc5CCVzxBbILa9GTwaPXW9xvjD5qBPpanp_J0Kk8fy9OQHD45IbHjB_q_4P-lH5rwcSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822074292</pqid></control><display><type>article</type><title>Partially observable Markov decision model for the treatment of early Prostate Cancer</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Goulionis, John E. ; Koutsiumaris, B. K.</creator><creatorcontrib>Goulionis, John E. ; Koutsiumaris, B. K.</creatorcontrib><description>Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In this paper we applied a Partially observable Markov decision processes (POMDP) formulation to the problem of treating patients with Early prostate Cancer (EPC). The purpose of this paper is to address the challenge of effectively managing Early Prostate cancer therapies. To solve this problem we used a procedure that take advantage of special problem structure, and we provide optimal policies to stochastic and dynamic decisions naturally arise in finding optimal disease treatment plans.</description><identifier>ISSN: 0030-3887</identifier><identifier>EISSN: 0975-0320</identifier><identifier>DOI: 10.1007/s12597-010-0015-0</identifier><language>eng</language><publisher>India: Springer-Verlag</publisher><subject>Biopsy ; Business and Management ; Cancer therapies ; Decision making ; Decision making models ; Health care policy ; Inventory control ; Length of stay ; Lung cancer ; Management ; Markov analysis ; Mathematics ; Medical treatment ; Mortality ; Operations Research/Decision Theory ; Production planning ; Prostate cancer ; Radiation therapy ; Stochastic control theory ; Studies ; Theory and Methodology ; Tumors</subject><ispartof>Opsearch, 2010-06, Vol.47 (2), p.105-117</ispartof><rights>Operational Research Society of India 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3</citedby><cites>FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/822074292?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,27922,27923,36058,44361</link.rule.ids></links><search><creatorcontrib>Goulionis, John E.</creatorcontrib><creatorcontrib>Koutsiumaris, B. K.</creatorcontrib><title>Partially observable Markov decision model for the treatment of early Prostate Cancer</title><title>Opsearch</title><addtitle>OPSEARCH</addtitle><description>Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In this paper we applied a Partially observable Markov decision processes (POMDP) formulation to the problem of treating patients with Early prostate Cancer (EPC). The purpose of this paper is to address the challenge of effectively managing Early Prostate cancer therapies. To solve this problem we used a procedure that take advantage of special problem structure, and we provide optimal policies to stochastic and dynamic decisions naturally arise in finding optimal disease treatment plans.</description><subject>Biopsy</subject><subject>Business and Management</subject><subject>Cancer therapies</subject><subject>Decision making</subject><subject>Decision making models</subject><subject>Health care policy</subject><subject>Inventory control</subject><subject>Length of stay</subject><subject>Lung cancer</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Mathematics</subject><subject>Medical treatment</subject><subject>Mortality</subject><subject>Operations Research/Decision Theory</subject><subject>Production planning</subject><subject>Prostate cancer</subject><subject>Radiation therapy</subject><subject>Stochastic control theory</subject><subject>Studies</subject><subject>Theory and Methodology</subject><subject>Tumors</subject><issn>0030-3887</issn><issn>0975-0320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gs9sDZcWJnRBFfUhEd6Gw5yRlS0rjYbqX-e1wFiYnpbnie904vIdcMbhmAvAuMF5XMgEEGwIoMTsgMKpmWnMNp2iGHLFdKnpOLENYApQAlZmS1ND72ZhgO1DUB_d40A9JX47_cnnbY9qF3I924DgdqnafxE2n0aOIGx0idpWh8cpfehWgi0tqMLfpLcmbNEPDqd87J6vHhvX7OFm9PL_X9ImtzUcasahurAAtZSs6UtNxiyXmRy6oQSoii4KyrmJV5JSRLoLFlUzJetta2slOYz8nNlLv17nuHIeq12_kxndSKc5CCVzxBbILa9GTwaPXW9xvjD5qBPpanp_J0Kk8fy9OQHD45IbHjB_q_4P-lH5rwcSc</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Goulionis, John E.</creator><creator>Koutsiumaris, B. K.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100601</creationdate><title>Partially observable Markov decision model for the treatment of early Prostate Cancer</title><author>Goulionis, John E. ; Koutsiumaris, B. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biopsy</topic><topic>Business and Management</topic><topic>Cancer therapies</topic><topic>Decision making</topic><topic>Decision making models</topic><topic>Health care policy</topic><topic>Inventory control</topic><topic>Length of stay</topic><topic>Lung cancer</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Mathematics</topic><topic>Medical treatment</topic><topic>Mortality</topic><topic>Operations Research/Decision Theory</topic><topic>Production planning</topic><topic>Prostate cancer</topic><topic>Radiation therapy</topic><topic>Stochastic control theory</topic><topic>Studies</topic><topic>Theory and Methodology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goulionis, John E.</creatorcontrib><creatorcontrib>Koutsiumaris, B. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Opsearch</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goulionis, John E.</au><au>Koutsiumaris, B. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partially observable Markov decision model for the treatment of early Prostate Cancer</atitle><jtitle>Opsearch</jtitle><stitle>OPSEARCH</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>47</volume><issue>2</issue><spage>105</spage><epage>117</epage><pages>105-117</pages><issn>0030-3887</issn><eissn>0975-0320</eissn><abstract>Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In this paper we applied a Partially observable Markov decision processes (POMDP) formulation to the problem of treating patients with Early prostate Cancer (EPC). The purpose of this paper is to address the challenge of effectively managing Early Prostate cancer therapies. To solve this problem we used a procedure that take advantage of special problem structure, and we provide optimal policies to stochastic and dynamic decisions naturally arise in finding optimal disease treatment plans.</abstract><cop>India</cop><pub>Springer-Verlag</pub><doi>10.1007/s12597-010-0015-0</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-3887 |
ispartof | Opsearch, 2010-06, Vol.47 (2), p.105-117 |
issn | 0030-3887 0975-0320 |
language | eng |
recordid | cdi_proquest_journals_822074292 |
source | ABI/INFORM Global (ProQuest); Springer Nature |
subjects | Biopsy Business and Management Cancer therapies Decision making Decision making models Health care policy Inventory control Length of stay Lung cancer Management Markov analysis Mathematics Medical treatment Mortality Operations Research/Decision Theory Production planning Prostate cancer Radiation therapy Stochastic control theory Studies Theory and Methodology Tumors |
title | Partially observable Markov decision model for the treatment of early Prostate Cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partially%20observable%20Markov%20decision%20model%20for%20the%20treatment%20of%20early%20Prostate%20Cancer&rft.jtitle=Opsearch&rft.au=Goulionis,%20John%20E.&rft.date=2010-06-01&rft.volume=47&rft.issue=2&rft.spage=105&rft.epage=117&rft.pages=105-117&rft.issn=0030-3887&rft.eissn=0975-0320&rft_id=info:doi/10.1007/s12597-010-0015-0&rft_dat=%3Cproquest_cross%3E2228525621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=822074292&rft_id=info:pmid/&rfr_iscdi=true |