Loading…

Partially observable Markov decision model for the treatment of early Prostate Cancer

Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In...

Full description

Saved in:
Bibliographic Details
Published in:Opsearch 2010-06, Vol.47 (2), p.105-117
Main Authors: Goulionis, John E., Koutsiumaris, B. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3
cites cdi_FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3
container_end_page 117
container_issue 2
container_start_page 105
container_title Opsearch
container_volume 47
creator Goulionis, John E.
Koutsiumaris, B. K.
description Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In this paper we applied a Partially observable Markov decision processes (POMDP) formulation to the problem of treating patients with Early prostate Cancer (EPC). The purpose of this paper is to address the challenge of effectively managing Early Prostate cancer therapies. To solve this problem we used a procedure that take advantage of special problem structure, and we provide optimal policies to stochastic and dynamic decisions naturally arise in finding optimal disease treatment plans.
doi_str_mv 10.1007/s12597-010-0015-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_822074292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2228525621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gs9sDZcWJnRBFfUhEd6Gw5yRlS0rjYbqX-e1wFiYnpbnie904vIdcMbhmAvAuMF5XMgEEGwIoMTsgMKpmWnMNp2iGHLFdKnpOLENYApQAlZmS1ND72ZhgO1DUB_d40A9JX47_cnnbY9qF3I924DgdqnafxE2n0aOIGx0idpWh8cpfehWgi0tqMLfpLcmbNEPDqd87J6vHhvX7OFm9PL_X9ImtzUcasahurAAtZSs6UtNxiyXmRy6oQSoii4KyrmJV5JSRLoLFlUzJetta2slOYz8nNlLv17nuHIeq12_kxndSKc5CCVzxBbILa9GTwaPXW9xvjD5qBPpanp_J0Kk8fy9OQHD45IbHjB_q_4P-lH5rwcSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822074292</pqid></control><display><type>article</type><title>Partially observable Markov decision model for the treatment of early Prostate Cancer</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Goulionis, John E. ; Koutsiumaris, B. K.</creator><creatorcontrib>Goulionis, John E. ; Koutsiumaris, B. K.</creatorcontrib><description>Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In this paper we applied a Partially observable Markov decision processes (POMDP) formulation to the problem of treating patients with Early prostate Cancer (EPC). The purpose of this paper is to address the challenge of effectively managing Early Prostate cancer therapies. To solve this problem we used a procedure that take advantage of special problem structure, and we provide optimal policies to stochastic and dynamic decisions naturally arise in finding optimal disease treatment plans.</description><identifier>ISSN: 0030-3887</identifier><identifier>EISSN: 0975-0320</identifier><identifier>DOI: 10.1007/s12597-010-0015-0</identifier><language>eng</language><publisher>India: Springer-Verlag</publisher><subject>Biopsy ; Business and Management ; Cancer therapies ; Decision making ; Decision making models ; Health care policy ; Inventory control ; Length of stay ; Lung cancer ; Management ; Markov analysis ; Mathematics ; Medical treatment ; Mortality ; Operations Research/Decision Theory ; Production planning ; Prostate cancer ; Radiation therapy ; Stochastic control theory ; Studies ; Theory and Methodology ; Tumors</subject><ispartof>Opsearch, 2010-06, Vol.47 (2), p.105-117</ispartof><rights>Operational Research Society of India 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3</citedby><cites>FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/822074292?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,27922,27923,36058,44361</link.rule.ids></links><search><creatorcontrib>Goulionis, John E.</creatorcontrib><creatorcontrib>Koutsiumaris, B. K.</creatorcontrib><title>Partially observable Markov decision model for the treatment of early Prostate Cancer</title><title>Opsearch</title><addtitle>OPSEARCH</addtitle><description>Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In this paper we applied a Partially observable Markov decision processes (POMDP) formulation to the problem of treating patients with Early prostate Cancer (EPC). The purpose of this paper is to address the challenge of effectively managing Early Prostate cancer therapies. To solve this problem we used a procedure that take advantage of special problem structure, and we provide optimal policies to stochastic and dynamic decisions naturally arise in finding optimal disease treatment plans.</description><subject>Biopsy</subject><subject>Business and Management</subject><subject>Cancer therapies</subject><subject>Decision making</subject><subject>Decision making models</subject><subject>Health care policy</subject><subject>Inventory control</subject><subject>Length of stay</subject><subject>Lung cancer</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Mathematics</subject><subject>Medical treatment</subject><subject>Mortality</subject><subject>Operations Research/Decision Theory</subject><subject>Production planning</subject><subject>Prostate cancer</subject><subject>Radiation therapy</subject><subject>Stochastic control theory</subject><subject>Studies</subject><subject>Theory and Methodology</subject><subject>Tumors</subject><issn>0030-3887</issn><issn>0975-0320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gs9sDZcWJnRBFfUhEd6Gw5yRlS0rjYbqX-e1wFiYnpbnie904vIdcMbhmAvAuMF5XMgEEGwIoMTsgMKpmWnMNp2iGHLFdKnpOLENYApQAlZmS1ND72ZhgO1DUB_d40A9JX47_cnnbY9qF3I924DgdqnafxE2n0aOIGx0idpWh8cpfehWgi0tqMLfpLcmbNEPDqd87J6vHhvX7OFm9PL_X9ImtzUcasahurAAtZSs6UtNxiyXmRy6oQSoii4KyrmJV5JSRLoLFlUzJetta2slOYz8nNlLv17nuHIeq12_kxndSKc5CCVzxBbILa9GTwaPXW9xvjD5qBPpanp_J0Kk8fy9OQHD45IbHjB_q_4P-lH5rwcSc</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Goulionis, John E.</creator><creator>Koutsiumaris, B. K.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100601</creationdate><title>Partially observable Markov decision model for the treatment of early Prostate Cancer</title><author>Goulionis, John E. ; Koutsiumaris, B. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biopsy</topic><topic>Business and Management</topic><topic>Cancer therapies</topic><topic>Decision making</topic><topic>Decision making models</topic><topic>Health care policy</topic><topic>Inventory control</topic><topic>Length of stay</topic><topic>Lung cancer</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Mathematics</topic><topic>Medical treatment</topic><topic>Mortality</topic><topic>Operations Research/Decision Theory</topic><topic>Production planning</topic><topic>Prostate cancer</topic><topic>Radiation therapy</topic><topic>Stochastic control theory</topic><topic>Studies</topic><topic>Theory and Methodology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goulionis, John E.</creatorcontrib><creatorcontrib>Koutsiumaris, B. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Opsearch</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goulionis, John E.</au><au>Koutsiumaris, B. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partially observable Markov decision model for the treatment of early Prostate Cancer</atitle><jtitle>Opsearch</jtitle><stitle>OPSEARCH</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>47</volume><issue>2</issue><spage>105</spage><epage>117</epage><pages>105-117</pages><issn>0030-3887</issn><eissn>0975-0320</eissn><abstract>Prostate cancer is second only to lung cancer as the leading cause of cancer deaths in the world Furthermore, policies are difficult to make because of the generally indolent nature of prostate cancer and because it tends to occur in older men who often have multiple, competing medical illnesses. In this paper we applied a Partially observable Markov decision processes (POMDP) formulation to the problem of treating patients with Early prostate Cancer (EPC). The purpose of this paper is to address the challenge of effectively managing Early Prostate cancer therapies. To solve this problem we used a procedure that take advantage of special problem structure, and we provide optimal policies to stochastic and dynamic decisions naturally arise in finding optimal disease treatment plans.</abstract><cop>India</cop><pub>Springer-Verlag</pub><doi>10.1007/s12597-010-0015-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-3887
ispartof Opsearch, 2010-06, Vol.47 (2), p.105-117
issn 0030-3887
0975-0320
language eng
recordid cdi_proquest_journals_822074292
source ABI/INFORM Global (ProQuest); Springer Nature
subjects Biopsy
Business and Management
Cancer therapies
Decision making
Decision making models
Health care policy
Inventory control
Length of stay
Lung cancer
Management
Markov analysis
Mathematics
Medical treatment
Mortality
Operations Research/Decision Theory
Production planning
Prostate cancer
Radiation therapy
Stochastic control theory
Studies
Theory and Methodology
Tumors
title Partially observable Markov decision model for the treatment of early Prostate Cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partially%20observable%20Markov%20decision%20model%20for%20the%20treatment%20of%20early%20Prostate%20Cancer&rft.jtitle=Opsearch&rft.au=Goulionis,%20John%20E.&rft.date=2010-06-01&rft.volume=47&rft.issue=2&rft.spage=105&rft.epage=117&rft.pages=105-117&rft.issn=0030-3887&rft.eissn=0975-0320&rft_id=info:doi/10.1007/s12597-010-0015-0&rft_dat=%3Cproquest_cross%3E2228525621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-9cbf80e57672187f2fe6225379548445521d91f73947180eaf6b6126cffc7d8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=822074292&rft_id=info:pmid/&rfr_iscdi=true