Loading…

Climate change predicted to cause severe increase of organic carbon in lakes

Riverine transport of organic carbon (OC) to the ocean is a significant component in the global carbon (C) cycle and the concentration of total organic carbon (TOC) in rivers and lakes is vital for ecosystem properties and water quality for human use. By use of a large dataset comprising chemical va...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2011-02, Vol.17 (2), p.1186-1192
Main Authors: LARSEN, SØREN, ANDERSEN, TOM, HESSEN, DAG O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Riverine transport of organic carbon (OC) to the ocean is a significant component in the global carbon (C) cycle and the concentration of total organic carbon (TOC) in rivers and lakes is vital for ecosystem properties and water quality for human use. By use of a large dataset comprising chemical variables and detailed catchment information in ∼1000 Norwegian pristine lakes covering a wide climatic range, we were able to predict TOC concentrations with high accuracy. We further predict, using a ‘space-for-time' approach and a downscaled, moderate, climate change scenario, that northern, boreal regions likely will experience strong increases in OC export from catchments to surface waters. Median concentrations of OC in these lakes will increase by 65%, from the current median of 2.0-3.3 mg C L⁻¹. This is a long-term effect, primarily mediated by increased terrestrial vegetation cover in response to climate change. This increase OC will have severe impacts on food-webs, productivity and human use. Given the robustness of the estimates and the general applicability of the parameters, we suggest that these findings would be relevant to boreal areas in general.
ISSN:1354-1013
1365-2486
DOI:10.1111/j.1365-2486.2010.02257.x