Loading…
Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss
An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroe...
Saved in:
Published in: | Ferroelectrics 2010-01, Vol.409 (1), p.185-189 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3 |
container_end_page | 189 |
container_issue | 1 |
container_start_page | 185 |
container_title | Ferroelectrics |
container_volume | 409 |
creator | Stolichnov, Igor Gysel, Roman Tagantsev, Alexander K. Riester, Sebastian W. E. Setter, Nava Salvatore, Giovanni A. Bouvet, Didier Ionescu, Adrian M. |
description | An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroelectric gate operation for 1T nonvolatile ferroelecetric memory applications. Here we explore a silicon-based ferroelectric field effect transistor with P(VDF-TrFE) gate showing a persistent switching of the drain current with the "on"/"off" current ratio of 10
3
-10
2
and retention exceeding 5 days. The physical mechanism of the retention loss has been addressed by monitoring the drain current relaxation in combination with the time-resolved piezo-force scanning probe microscopy. The results suggest that the retention loss is controlled by the polarization screening due to the charge injection into the interface-adjacent layer rather than the polarization loss due to the depolarization effect. |
doi_str_mv | 10.1080/00150193.2010.486237 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_847613674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251028001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3</originalsourceid><addsrcrecordid>eNp9kE1rVDEUhoMoOFb_gYsgiKtb831vViKlH8IUpa3rkEnOtRlyb8Ykg86_b67TunDhKuTwvCdvHoTeUnJKyUA-EkIloZqfMtJGYlCM98_QikrFO0kpe45WC9ItzEv0qpRtu3Ih9AptLyDnBBFczcHhbykeJsj40lbAd9nOJZSaMrYFW3ydPER8eygVJjy26fnvXUw5zD9wvQd8De7ezqFMBafxz-QGKsw1pBmvUymv0YvRxgJvHs8T9P3i_O7sqlt_vfxy9nndOS5k7fSGS6ZaOeVIrzR44Tz3TnnhZb-BfhSSWerZZsO0o6BH1g9q5GrwWivPgZ-gD8e9u5x-7qFUM4XiIEY7Q9oXM0ipBq6YbuS7f8ht2ue5lTOD6BXlqhcNEkfI5faJDKPZ5TDZfDCUmEW_edJvFv3mqL_F3j_utsXZODaXLpS_2YYwzYalw6cjF-amdLK_Uo7eVHtoZp9C_L8vPQAX15iH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847613674</pqid></control><display><type>article</type><title>Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Stolichnov, Igor ; Gysel, Roman ; Tagantsev, Alexander K. ; Riester, Sebastian W. E. ; Setter, Nava ; Salvatore, Giovanni A. ; Bouvet, Didier ; Ionescu, Adrian M.</creator><creatorcontrib>Stolichnov, Igor ; Gysel, Roman ; Tagantsev, Alexander K. ; Riester, Sebastian W. E. ; Setter, Nava ; Salvatore, Giovanni A. ; Bouvet, Didier ; Ionescu, Adrian M.</creatorcontrib><description>An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroelectric gate operation for 1T nonvolatile ferroelecetric memory applications. Here we explore a silicon-based ferroelectric field effect transistor with P(VDF-TrFE) gate showing a persistent switching of the drain current with the "on"/"off" current ratio of 10
3
-10
2
and retention exceeding 5 days. The physical mechanism of the retention loss has been addressed by monitoring the drain current relaxation in combination with the time-resolved piezo-force scanning probe microscopy. The results suggest that the retention loss is controlled by the polarization screening due to the charge injection into the interface-adjacent layer rather than the polarization loss due to the depolarization effect.</description><identifier>ISSN: 0015-0193</identifier><identifier>EISSN: 1563-5112</identifier><identifier>DOI: 10.1080/00150193.2010.486237</identifier><identifier>CODEN: FEROA8</identifier><language>eng</language><publisher>Colchester: Taylor & Francis Group</publisher><subject>Applied sciences ; Depolarization ; Dielectric properties ; Drains ; Electronics ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Field effect transistors ; Gates ; Materials science ; Microscopy ; Polarization ; Polymers ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Spontaneous ; Temperature effects ; Transistors</subject><ispartof>Ferroelectrics, 2010-01, Vol.409 (1), p.185-189</ispartof><rights>Copyright Taylor & Francis Group, LLC 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor & Francis Ltd. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23729289$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stolichnov, Igor</creatorcontrib><creatorcontrib>Gysel, Roman</creatorcontrib><creatorcontrib>Tagantsev, Alexander K.</creatorcontrib><creatorcontrib>Riester, Sebastian W. E.</creatorcontrib><creatorcontrib>Setter, Nava</creatorcontrib><creatorcontrib>Salvatore, Giovanni A.</creatorcontrib><creatorcontrib>Bouvet, Didier</creatorcontrib><creatorcontrib>Ionescu, Adrian M.</creatorcontrib><title>Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss</title><title>Ferroelectrics</title><description>An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroelectric gate operation for 1T nonvolatile ferroelecetric memory applications. Here we explore a silicon-based ferroelectric field effect transistor with P(VDF-TrFE) gate showing a persistent switching of the drain current with the "on"/"off" current ratio of 10
3
-10
2
and retention exceeding 5 days. The physical mechanism of the retention loss has been addressed by monitoring the drain current relaxation in combination with the time-resolved piezo-force scanning probe microscopy. The results suggest that the retention loss is controlled by the polarization screening due to the charge injection into the interface-adjacent layer rather than the polarization loss due to the depolarization effect.</description><subject>Applied sciences</subject><subject>Depolarization</subject><subject>Dielectric properties</subject><subject>Drains</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Field effect transistors</subject><subject>Gates</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Polarization</subject><subject>Polymers</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Spontaneous</subject><subject>Temperature effects</subject><subject>Transistors</subject><issn>0015-0193</issn><issn>1563-5112</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rVDEUhoMoOFb_gYsgiKtb831vViKlH8IUpa3rkEnOtRlyb8Ykg86_b67TunDhKuTwvCdvHoTeUnJKyUA-EkIloZqfMtJGYlCM98_QikrFO0kpe45WC9ItzEv0qpRtu3Ih9AptLyDnBBFczcHhbykeJsj40lbAd9nOJZSaMrYFW3ydPER8eygVJjy26fnvXUw5zD9wvQd8De7ezqFMBafxz-QGKsw1pBmvUymv0YvRxgJvHs8T9P3i_O7sqlt_vfxy9nndOS5k7fSGS6ZaOeVIrzR44Tz3TnnhZb-BfhSSWerZZsO0o6BH1g9q5GrwWivPgZ-gD8e9u5x-7qFUM4XiIEY7Q9oXM0ipBq6YbuS7f8ht2ue5lTOD6BXlqhcNEkfI5faJDKPZ5TDZfDCUmEW_edJvFv3mqL_F3j_utsXZODaXLpS_2YYwzYalw6cjF-amdLK_Uo7eVHtoZp9C_L8vPQAX15iH</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Stolichnov, Igor</creator><creator>Gysel, Roman</creator><creator>Tagantsev, Alexander K.</creator><creator>Riester, Sebastian W. E.</creator><creator>Setter, Nava</creator><creator>Salvatore, Giovanni A.</creator><creator>Bouvet, Didier</creator><creator>Ionescu, Adrian M.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100101</creationdate><title>Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss</title><author>Stolichnov, Igor ; Gysel, Roman ; Tagantsev, Alexander K. ; Riester, Sebastian W. E. ; Setter, Nava ; Salvatore, Giovanni A. ; Bouvet, Didier ; Ionescu, Adrian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Depolarization</topic><topic>Dielectric properties</topic><topic>Drains</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Field effect transistors</topic><topic>Gates</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Polarization</topic><topic>Polymers</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Spontaneous</topic><topic>Temperature effects</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stolichnov, Igor</creatorcontrib><creatorcontrib>Gysel, Roman</creatorcontrib><creatorcontrib>Tagantsev, Alexander K.</creatorcontrib><creatorcontrib>Riester, Sebastian W. E.</creatorcontrib><creatorcontrib>Setter, Nava</creatorcontrib><creatorcontrib>Salvatore, Giovanni A.</creatorcontrib><creatorcontrib>Bouvet, Didier</creatorcontrib><creatorcontrib>Ionescu, Adrian M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ferroelectrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stolichnov, Igor</au><au>Gysel, Roman</au><au>Tagantsev, Alexander K.</au><au>Riester, Sebastian W. E.</au><au>Setter, Nava</au><au>Salvatore, Giovanni A.</au><au>Bouvet, Didier</au><au>Ionescu, Adrian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss</atitle><jtitle>Ferroelectrics</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>409</volume><issue>1</issue><spage>185</spage><epage>189</epage><pages>185-189</pages><issn>0015-0193</issn><eissn>1563-5112</eissn><coden>FEROA8</coden><abstract>An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroelectric gate operation for 1T nonvolatile ferroelecetric memory applications. Here we explore a silicon-based ferroelectric field effect transistor with P(VDF-TrFE) gate showing a persistent switching of the drain current with the "on"/"off" current ratio of 10
3
-10
2
and retention exceeding 5 days. The physical mechanism of the retention loss has been addressed by monitoring the drain current relaxation in combination with the time-resolved piezo-force scanning probe microscopy. The results suggest that the retention loss is controlled by the polarization screening due to the charge injection into the interface-adjacent layer rather than the polarization loss due to the depolarization effect.</abstract><cop>Colchester</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00150193.2010.486237</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-0193 |
ispartof | Ferroelectrics, 2010-01, Vol.409 (1), p.185-189 |
issn | 0015-0193 1563-5112 |
language | eng |
recordid | cdi_proquest_journals_847613674 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Applied sciences Depolarization Dielectric properties Drains Electronics Exact sciences and technology Ferroelectric materials Ferroelectricity Ferroelectrics Field effect transistors Gates Materials science Microscopy Polarization Polymers Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Spontaneous Temperature effects Transistors |
title | Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20Polymer%20Gate%20Transistor%20as%20a%20Model%20System%20for%20Exploring%20the%20Mechanisms%20of%20the%20Retention%20Loss&rft.jtitle=Ferroelectrics&rft.au=Stolichnov,%20Igor&rft.date=2010-01-01&rft.volume=409&rft.issue=1&rft.spage=185&rft.epage=189&rft.pages=185-189&rft.issn=0015-0193&rft.eissn=1563-5112&rft.coden=FEROA8&rft_id=info:doi/10.1080/00150193.2010.486237&rft_dat=%3Cproquest_cross%3E2251028001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=847613674&rft_id=info:pmid/&rfr_iscdi=true |