Loading…

Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss

An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroe...

Full description

Saved in:
Bibliographic Details
Published in:Ferroelectrics 2010-01, Vol.409 (1), p.185-189
Main Authors: Stolichnov, Igor, Gysel, Roman, Tagantsev, Alexander K., Riester, Sebastian W. E., Setter, Nava, Salvatore, Giovanni A., Bouvet, Didier, Ionescu, Adrian M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3
container_end_page 189
container_issue 1
container_start_page 185
container_title Ferroelectrics
container_volume 409
creator Stolichnov, Igor
Gysel, Roman
Tagantsev, Alexander K.
Riester, Sebastian W. E.
Setter, Nava
Salvatore, Giovanni A.
Bouvet, Didier
Ionescu, Adrian M.
description An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroelectric gate operation for 1T nonvolatile ferroelecetric memory applications. Here we explore a silicon-based ferroelectric field effect transistor with P(VDF-TrFE) gate showing a persistent switching of the drain current with the "on"/"off" current ratio of 10 3 -10 2 and retention exceeding 5 days. The physical mechanism of the retention loss has been addressed by monitoring the drain current relaxation in combination with the time-resolved piezo-force scanning probe microscopy. The results suggest that the retention loss is controlled by the polarization screening due to the charge injection into the interface-adjacent layer rather than the polarization loss due to the depolarization effect.
doi_str_mv 10.1080/00150193.2010.486237
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_847613674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251028001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3</originalsourceid><addsrcrecordid>eNp9kE1rVDEUhoMoOFb_gYsgiKtb831vViKlH8IUpa3rkEnOtRlyb8Ykg86_b67TunDhKuTwvCdvHoTeUnJKyUA-EkIloZqfMtJGYlCM98_QikrFO0kpe45WC9ItzEv0qpRtu3Ih9AptLyDnBBFczcHhbykeJsj40lbAd9nOJZSaMrYFW3ydPER8eygVJjy26fnvXUw5zD9wvQd8De7ezqFMBafxz-QGKsw1pBmvUymv0YvRxgJvHs8T9P3i_O7sqlt_vfxy9nndOS5k7fSGS6ZaOeVIrzR44Tz3TnnhZb-BfhSSWerZZsO0o6BH1g9q5GrwWivPgZ-gD8e9u5x-7qFUM4XiIEY7Q9oXM0ipBq6YbuS7f8ht2ue5lTOD6BXlqhcNEkfI5faJDKPZ5TDZfDCUmEW_edJvFv3mqL_F3j_utsXZODaXLpS_2YYwzYalw6cjF-amdLK_Uo7eVHtoZp9C_L8vPQAX15iH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847613674</pqid></control><display><type>article</type><title>Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Stolichnov, Igor ; Gysel, Roman ; Tagantsev, Alexander K. ; Riester, Sebastian W. E. ; Setter, Nava ; Salvatore, Giovanni A. ; Bouvet, Didier ; Ionescu, Adrian M.</creator><creatorcontrib>Stolichnov, Igor ; Gysel, Roman ; Tagantsev, Alexander K. ; Riester, Sebastian W. E. ; Setter, Nava ; Salvatore, Giovanni A. ; Bouvet, Didier ; Ionescu, Adrian M.</creatorcontrib><description>An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroelectric gate operation for 1T nonvolatile ferroelecetric memory applications. Here we explore a silicon-based ferroelectric field effect transistor with P(VDF-TrFE) gate showing a persistent switching of the drain current with the "on"/"off" current ratio of 10 3 -10 2 and retention exceeding 5 days. The physical mechanism of the retention loss has been addressed by monitoring the drain current relaxation in combination with the time-resolved piezo-force scanning probe microscopy. The results suggest that the retention loss is controlled by the polarization screening due to the charge injection into the interface-adjacent layer rather than the polarization loss due to the depolarization effect.</description><identifier>ISSN: 0015-0193</identifier><identifier>EISSN: 1563-5112</identifier><identifier>DOI: 10.1080/00150193.2010.486237</identifier><identifier>CODEN: FEROA8</identifier><language>eng</language><publisher>Colchester: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Depolarization ; Dielectric properties ; Drains ; Electronics ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Field effect transistors ; Gates ; Materials science ; Microscopy ; Polarization ; Polymers ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Spontaneous ; Temperature effects ; Transistors</subject><ispartof>Ferroelectrics, 2010-01, Vol.409 (1), p.185-189</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Ltd. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23729289$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stolichnov, Igor</creatorcontrib><creatorcontrib>Gysel, Roman</creatorcontrib><creatorcontrib>Tagantsev, Alexander K.</creatorcontrib><creatorcontrib>Riester, Sebastian W. E.</creatorcontrib><creatorcontrib>Setter, Nava</creatorcontrib><creatorcontrib>Salvatore, Giovanni A.</creatorcontrib><creatorcontrib>Bouvet, Didier</creatorcontrib><creatorcontrib>Ionescu, Adrian M.</creatorcontrib><title>Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss</title><title>Ferroelectrics</title><description>An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroelectric gate operation for 1T nonvolatile ferroelecetric memory applications. Here we explore a silicon-based ferroelectric field effect transistor with P(VDF-TrFE) gate showing a persistent switching of the drain current with the "on"/"off" current ratio of 10 3 -10 2 and retention exceeding 5 days. The physical mechanism of the retention loss has been addressed by monitoring the drain current relaxation in combination with the time-resolved piezo-force scanning probe microscopy. The results suggest that the retention loss is controlled by the polarization screening due to the charge injection into the interface-adjacent layer rather than the polarization loss due to the depolarization effect.</description><subject>Applied sciences</subject><subject>Depolarization</subject><subject>Dielectric properties</subject><subject>Drains</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Field effect transistors</subject><subject>Gates</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Polarization</subject><subject>Polymers</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Spontaneous</subject><subject>Temperature effects</subject><subject>Transistors</subject><issn>0015-0193</issn><issn>1563-5112</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rVDEUhoMoOFb_gYsgiKtb831vViKlH8IUpa3rkEnOtRlyb8Ykg86_b67TunDhKuTwvCdvHoTeUnJKyUA-EkIloZqfMtJGYlCM98_QikrFO0kpe45WC9ItzEv0qpRtu3Ih9AptLyDnBBFczcHhbykeJsj40lbAd9nOJZSaMrYFW3ydPER8eygVJjy26fnvXUw5zD9wvQd8De7ezqFMBafxz-QGKsw1pBmvUymv0YvRxgJvHs8T9P3i_O7sqlt_vfxy9nndOS5k7fSGS6ZaOeVIrzR44Tz3TnnhZb-BfhSSWerZZsO0o6BH1g9q5GrwWivPgZ-gD8e9u5x-7qFUM4XiIEY7Q9oXM0ipBq6YbuS7f8ht2ue5lTOD6BXlqhcNEkfI5faJDKPZ5TDZfDCUmEW_edJvFv3mqL_F3j_utsXZODaXLpS_2YYwzYalw6cjF-amdLK_Uo7eVHtoZp9C_L8vPQAX15iH</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Stolichnov, Igor</creator><creator>Gysel, Roman</creator><creator>Tagantsev, Alexander K.</creator><creator>Riester, Sebastian W. E.</creator><creator>Setter, Nava</creator><creator>Salvatore, Giovanni A.</creator><creator>Bouvet, Didier</creator><creator>Ionescu, Adrian M.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100101</creationdate><title>Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss</title><author>Stolichnov, Igor ; Gysel, Roman ; Tagantsev, Alexander K. ; Riester, Sebastian W. E. ; Setter, Nava ; Salvatore, Giovanni A. ; Bouvet, Didier ; Ionescu, Adrian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Depolarization</topic><topic>Dielectric properties</topic><topic>Drains</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Field effect transistors</topic><topic>Gates</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Polarization</topic><topic>Polymers</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Spontaneous</topic><topic>Temperature effects</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stolichnov, Igor</creatorcontrib><creatorcontrib>Gysel, Roman</creatorcontrib><creatorcontrib>Tagantsev, Alexander K.</creatorcontrib><creatorcontrib>Riester, Sebastian W. E.</creatorcontrib><creatorcontrib>Setter, Nava</creatorcontrib><creatorcontrib>Salvatore, Giovanni A.</creatorcontrib><creatorcontrib>Bouvet, Didier</creatorcontrib><creatorcontrib>Ionescu, Adrian M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ferroelectrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stolichnov, Igor</au><au>Gysel, Roman</au><au>Tagantsev, Alexander K.</au><au>Riester, Sebastian W. E.</au><au>Setter, Nava</au><au>Salvatore, Giovanni A.</au><au>Bouvet, Didier</au><au>Ionescu, Adrian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss</atitle><jtitle>Ferroelectrics</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>409</volume><issue>1</issue><spage>185</spage><epage>189</epage><pages>185-189</pages><issn>0015-0193</issn><eissn>1563-5112</eissn><coden>FEROA8</coden><abstract>An attractive combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)), including a relatively high spontaneous polarization and low dielectric constant as well as low processing temperature makes this material useful for studying the ferroelectric gate operation for 1T nonvolatile ferroelecetric memory applications. Here we explore a silicon-based ferroelectric field effect transistor with P(VDF-TrFE) gate showing a persistent switching of the drain current with the "on"/"off" current ratio of 10 3 -10 2 and retention exceeding 5 days. The physical mechanism of the retention loss has been addressed by monitoring the drain current relaxation in combination with the time-resolved piezo-force scanning probe microscopy. The results suggest that the retention loss is controlled by the polarization screening due to the charge injection into the interface-adjacent layer rather than the polarization loss due to the depolarization effect.</abstract><cop>Colchester</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00150193.2010.486237</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-0193
ispartof Ferroelectrics, 2010-01, Vol.409 (1), p.185-189
issn 0015-0193
1563-5112
language eng
recordid cdi_proquest_journals_847613674
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Applied sciences
Depolarization
Dielectric properties
Drains
Electronics
Exact sciences and technology
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Field effect transistors
Gates
Materials science
Microscopy
Polarization
Polymers
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Spontaneous
Temperature effects
Transistors
title Ferroelectric Polymer Gate Transistor as a Model System for Exploring the Mechanisms of the Retention Loss
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20Polymer%20Gate%20Transistor%20as%20a%20Model%20System%20for%20Exploring%20the%20Mechanisms%20of%20the%20Retention%20Loss&rft.jtitle=Ferroelectrics&rft.au=Stolichnov,%20Igor&rft.date=2010-01-01&rft.volume=409&rft.issue=1&rft.spage=185&rft.epage=189&rft.pages=185-189&rft.issn=0015-0193&rft.eissn=1563-5112&rft.coden=FEROA8&rft_id=info:doi/10.1080/00150193.2010.486237&rft_dat=%3Cproquest_cross%3E2251028001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-9b35264496c0769ed4cd3dc6d4d57be7f452a1d2bb29c1e9f2786f368d996d3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=847613674&rft_id=info:pmid/&rfr_iscdi=true