Loading…

Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor

The oxidation of CO on nanoporous Au, in particular the activation of molecular O 2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O 2 adsorption. [Display omitted] ► Mechanism of oxygen activation and CO ox...

Full description

Saved in:
Bibliographic Details
Published in:Journal of catalysis 2011-03, Vol.278 (2), p.219-227
Main Authors: Wang, L.C., Jin, H.J., Widmann, D., Weissmüller, J., Behm, R.J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3
cites
container_end_page 227
container_issue 2
container_start_page 219
container_title Journal of catalysis
container_volume 278
creator Wang, L.C.
Jin, H.J.
Widmann, D.
Weissmüller, J.
Behm, R.J.
description The oxidation of CO on nanoporous Au, in particular the activation of molecular O 2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O 2 adsorption. [Display omitted] ► Mechanism of oxygen activation and CO oxidation on nanoporous Au (NPG). ► Oxygen is activated at 30 °C on NPG, forming a stable atomically adsorbed species. ► Oxygen activation depends non-linearly on the O 2 partial pressure. ► O 2 activation/stable O act formation is rate limiting for continuous CO oxidation. The oxidation of CO on nanoporous Au (NPG), in particular the activation of molecular O 2, was investigated by a combination of kinetic and temporal analysis of products (TAP) measurements. Continuous reaction measurements in a flow of reaction gas, at atmospheric pressure, show a catalytic behavior of the NPG, with the activity decreasing to 33% of the initial activity over 1000 min on stream. In contrast, during simultaneous pulsing of CO and O 2, the formation of CO 2 on the NPG catalyst rapidly decreased to values below the detection limit after reactive removal of the surface oxygen species present after sample preparation. Possible mechanisms explaining this discrepancy are discussed, using further information from multi-pulse TAP experiments, which revealed that molecular O 2 can be activated and stored on NPG catalyst at room temperature, though with a low probability.
doi_str_mv 10.1016/j.jcat.2010.12.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_851758800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951710004276</els_id><sourcerecordid>2267506761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wBuD4GXnSbq0KXgzNr9AUHC7DqdpMlK0mUkr-u9NmXhpOBAIz3lPzkPIOYMZA1Zct7NWYz_jMD7wGUB5QCYMKsh4Uc0PyQSAs6wSrDwmJzG2AIwJISdktfru8N1pGvuhcSZSb-nymfov12DvfEdTddj5nQ9-iHQx0CG6bkuRrhcvNBjUvQ-n5MjiWzRnv_eUbO5u18uH7On5_nG5eMr0XM77rCmw4QVKEGWNNTDMeTqV5WB1UwkNUheWsUYAlnVtWM7nphbGVLwu8krYfEou97m74D8GE3vV-iF0aaSSaTUhJUCC-B7SwccYjFW74N4xfCsGapSlWjXKUqMsxbhKslLT1W8yRo1vNmCnXfzr5LmsSpnzxF3sOYte4TYkZvOaggpIgpPpcfzNnjBJxKczQUXtTKdN44LRvWq8--8jP64ch2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851758800</pqid></control><display><type>article</type><title>Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor</title><source>Elsevier</source><creator>Wang, L.C. ; Jin, H.J. ; Widmann, D. ; Weissmüller, J. ; Behm, R.J.</creator><creatorcontrib>Wang, L.C. ; Jin, H.J. ; Widmann, D. ; Weissmüller, J. ; Behm, R.J.</creatorcontrib><description>The oxidation of CO on nanoporous Au, in particular the activation of molecular O 2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O 2 adsorption. [Display omitted] ► Mechanism of oxygen activation and CO oxidation on nanoporous Au (NPG). ► Oxygen is activated at 30 °C on NPG, forming a stable atomically adsorbed species. ► Oxygen activation depends non-linearly on the O 2 partial pressure. ► O 2 activation/stable O act formation is rate limiting for continuous CO oxidation. The oxidation of CO on nanoporous Au (NPG), in particular the activation of molecular O 2, was investigated by a combination of kinetic and temporal analysis of products (TAP) measurements. Continuous reaction measurements in a flow of reaction gas, at atmospheric pressure, show a catalytic behavior of the NPG, with the activity decreasing to 33% of the initial activity over 1000 min on stream. In contrast, during simultaneous pulsing of CO and O 2, the formation of CO 2 on the NPG catalyst rapidly decreased to values below the detection limit after reactive removal of the surface oxygen species present after sample preparation. Possible mechanisms explaining this discrepancy are discussed, using further information from multi-pulse TAP experiments, which revealed that molecular O 2 can be activated and stored on NPG catalyst at room temperature, though with a low probability.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2010.12.007</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>ambient temperature ; atmospheric pressure ; carbon dioxide ; Carbon monoxide ; Catalysis ; catalysts ; Chemistry ; CO oxidation ; Colloidal state and disperse state ; detection limit ; Dynamic studies ; Exact sciences and technology ; General and physical chemistry ; gold ; Kinetics ; Nanoporous Au catalysts ; Oxidation ; Oxygen ; Oxygen storage capacity (OSC) ; Porous materials ; probability ; streams ; Temporal analysis of products (TAP) ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 2011-03, Vol.278 (2), p.219-227</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23897832$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, L.C.</creatorcontrib><creatorcontrib>Jin, H.J.</creatorcontrib><creatorcontrib>Widmann, D.</creatorcontrib><creatorcontrib>Weissmüller, J.</creatorcontrib><creatorcontrib>Behm, R.J.</creatorcontrib><title>Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor</title><title>Journal of catalysis</title><description>The oxidation of CO on nanoporous Au, in particular the activation of molecular O 2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O 2 adsorption. [Display omitted] ► Mechanism of oxygen activation and CO oxidation on nanoporous Au (NPG). ► Oxygen is activated at 30 °C on NPG, forming a stable atomically adsorbed species. ► Oxygen activation depends non-linearly on the O 2 partial pressure. ► O 2 activation/stable O act formation is rate limiting for continuous CO oxidation. The oxidation of CO on nanoporous Au (NPG), in particular the activation of molecular O 2, was investigated by a combination of kinetic and temporal analysis of products (TAP) measurements. Continuous reaction measurements in a flow of reaction gas, at atmospheric pressure, show a catalytic behavior of the NPG, with the activity decreasing to 33% of the initial activity over 1000 min on stream. In contrast, during simultaneous pulsing of CO and O 2, the formation of CO 2 on the NPG catalyst rapidly decreased to values below the detection limit after reactive removal of the surface oxygen species present after sample preparation. Possible mechanisms explaining this discrepancy are discussed, using further information from multi-pulse TAP experiments, which revealed that molecular O 2 can be activated and stored on NPG catalyst at room temperature, though with a low probability.</description><subject>ambient temperature</subject><subject>atmospheric pressure</subject><subject>carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>Chemistry</subject><subject>CO oxidation</subject><subject>Colloidal state and disperse state</subject><subject>detection limit</subject><subject>Dynamic studies</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>gold</subject><subject>Kinetics</subject><subject>Nanoporous Au catalysts</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen storage capacity (OSC)</subject><subject>Porous materials</subject><subject>probability</subject><subject>streams</subject><subject>Temporal analysis of products (TAP)</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wBuD4GXnSbq0KXgzNr9AUHC7DqdpMlK0mUkr-u9NmXhpOBAIz3lPzkPIOYMZA1Zct7NWYz_jMD7wGUB5QCYMKsh4Uc0PyQSAs6wSrDwmJzG2AIwJISdktfru8N1pGvuhcSZSb-nymfov12DvfEdTddj5nQ9-iHQx0CG6bkuRrhcvNBjUvQ-n5MjiWzRnv_eUbO5u18uH7On5_nG5eMr0XM77rCmw4QVKEGWNNTDMeTqV5WB1UwkNUheWsUYAlnVtWM7nphbGVLwu8krYfEou97m74D8GE3vV-iF0aaSSaTUhJUCC-B7SwccYjFW74N4xfCsGapSlWjXKUqMsxbhKslLT1W8yRo1vNmCnXfzr5LmsSpnzxF3sOYte4TYkZvOaggpIgpPpcfzNnjBJxKczQUXtTKdN44LRvWq8--8jP64ch2E</recordid><startdate>20110307</startdate><enddate>20110307</enddate><creator>Wang, L.C.</creator><creator>Jin, H.J.</creator><creator>Widmann, D.</creator><creator>Weissmüller, J.</creator><creator>Behm, R.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110307</creationdate><title>Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor</title><author>Wang, L.C. ; Jin, H.J. ; Widmann, D. ; Weissmüller, J. ; Behm, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ambient temperature</topic><topic>atmospheric pressure</topic><topic>carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>Chemistry</topic><topic>CO oxidation</topic><topic>Colloidal state and disperse state</topic><topic>detection limit</topic><topic>Dynamic studies</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>gold</topic><topic>Kinetics</topic><topic>Nanoporous Au catalysts</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen storage capacity (OSC)</topic><topic>Porous materials</topic><topic>probability</topic><topic>streams</topic><topic>Temporal analysis of products (TAP)</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, L.C.</creatorcontrib><creatorcontrib>Jin, H.J.</creatorcontrib><creatorcontrib>Widmann, D.</creatorcontrib><creatorcontrib>Weissmüller, J.</creatorcontrib><creatorcontrib>Behm, R.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, L.C.</au><au>Jin, H.J.</au><au>Widmann, D.</au><au>Weissmüller, J.</au><au>Behm, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor</atitle><jtitle>Journal of catalysis</jtitle><date>2011-03-07</date><risdate>2011</risdate><volume>278</volume><issue>2</issue><spage>219</spage><epage>227</epage><pages>219-227</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>The oxidation of CO on nanoporous Au, in particular the activation of molecular O 2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O 2 adsorption. [Display omitted] ► Mechanism of oxygen activation and CO oxidation on nanoporous Au (NPG). ► Oxygen is activated at 30 °C on NPG, forming a stable atomically adsorbed species. ► Oxygen activation depends non-linearly on the O 2 partial pressure. ► O 2 activation/stable O act formation is rate limiting for continuous CO oxidation. The oxidation of CO on nanoporous Au (NPG), in particular the activation of molecular O 2, was investigated by a combination of kinetic and temporal analysis of products (TAP) measurements. Continuous reaction measurements in a flow of reaction gas, at atmospheric pressure, show a catalytic behavior of the NPG, with the activity decreasing to 33% of the initial activity over 1000 min on stream. In contrast, during simultaneous pulsing of CO and O 2, the formation of CO 2 on the NPG catalyst rapidly decreased to values below the detection limit after reactive removal of the surface oxygen species present after sample preparation. Possible mechanisms explaining this discrepancy are discussed, using further information from multi-pulse TAP experiments, which revealed that molecular O 2 can be activated and stored on NPG catalyst at room temperature, though with a low probability.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2010.12.007</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2011-03, Vol.278 (2), p.219-227
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_851758800
source Elsevier
subjects ambient temperature
atmospheric pressure
carbon dioxide
Carbon monoxide
Catalysis
catalysts
Chemistry
CO oxidation
Colloidal state and disperse state
detection limit
Dynamic studies
Exact sciences and technology
General and physical chemistry
gold
Kinetics
Nanoporous Au catalysts
Oxidation
Oxygen
Oxygen storage capacity (OSC)
Porous materials
probability
streams
Temporal analysis of products (TAP)
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20studies%20of%20CO%20oxidation%20on%20nanoporous%20Au%20using%20a%20TAP%20reactor&rft.jtitle=Journal%20of%20catalysis&rft.au=Wang,%20L.C.&rft.date=2011-03-07&rft.volume=278&rft.issue=2&rft.spage=219&rft.epage=227&rft.pages=219-227&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2010.12.007&rft_dat=%3Cproquest_cross%3E2267506761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=851758800&rft_id=info:pmid/&rfr_iscdi=true