Loading…
Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor
The oxidation of CO on nanoporous Au, in particular the activation of molecular O 2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O 2 adsorption. [Display omitted] ► Mechanism of oxygen activation and CO ox...
Saved in:
Published in: | Journal of catalysis 2011-03, Vol.278 (2), p.219-227 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3 |
---|---|
cites | |
container_end_page | 227 |
container_issue | 2 |
container_start_page | 219 |
container_title | Journal of catalysis |
container_volume | 278 |
creator | Wang, L.C. Jin, H.J. Widmann, D. Weissmüller, J. Behm, R.J. |
description | The oxidation of CO on nanoporous Au, in particular the activation of molecular O
2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O
2 adsorption.
[Display omitted]
► Mechanism of oxygen activation and CO oxidation on nanoporous Au (NPG). ► Oxygen is activated at 30
°C on NPG, forming a stable atomically adsorbed species. ► Oxygen activation depends non-linearly on the O
2 partial pressure. ► O
2 activation/stable O
act formation is rate limiting for continuous CO oxidation.
The oxidation of CO on nanoporous Au (NPG), in particular the activation of molecular O
2, was investigated by a combination of kinetic and temporal analysis of products (TAP) measurements. Continuous reaction measurements in a flow of reaction gas, at atmospheric pressure, show a catalytic behavior of the NPG, with the activity decreasing to 33% of the initial activity over 1000
min on stream. In contrast, during simultaneous pulsing of CO and O
2, the formation of CO
2 on the NPG catalyst rapidly decreased to values below the detection limit after reactive removal of the surface oxygen species present after sample preparation. Possible mechanisms explaining this discrepancy are discussed, using further information from multi-pulse TAP experiments, which revealed that molecular O
2 can be activated and stored on NPG catalyst at room temperature, though with a low probability. |
doi_str_mv | 10.1016/j.jcat.2010.12.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_851758800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951710004276</els_id><sourcerecordid>2267506761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wBuD4GXnSbq0KXgzNr9AUHC7DqdpMlK0mUkr-u9NmXhpOBAIz3lPzkPIOYMZA1Zct7NWYz_jMD7wGUB5QCYMKsh4Uc0PyQSAs6wSrDwmJzG2AIwJISdktfru8N1pGvuhcSZSb-nymfov12DvfEdTddj5nQ9-iHQx0CG6bkuRrhcvNBjUvQ-n5MjiWzRnv_eUbO5u18uH7On5_nG5eMr0XM77rCmw4QVKEGWNNTDMeTqV5WB1UwkNUheWsUYAlnVtWM7nphbGVLwu8krYfEou97m74D8GE3vV-iF0aaSSaTUhJUCC-B7SwccYjFW74N4xfCsGapSlWjXKUqMsxbhKslLT1W8yRo1vNmCnXfzr5LmsSpnzxF3sOYte4TYkZvOaggpIgpPpcfzNnjBJxKczQUXtTKdN44LRvWq8--8jP64ch2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851758800</pqid></control><display><type>article</type><title>Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor</title><source>Elsevier</source><creator>Wang, L.C. ; Jin, H.J. ; Widmann, D. ; Weissmüller, J. ; Behm, R.J.</creator><creatorcontrib>Wang, L.C. ; Jin, H.J. ; Widmann, D. ; Weissmüller, J. ; Behm, R.J.</creatorcontrib><description>The oxidation of CO on nanoporous Au, in particular the activation of molecular O
2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O
2 adsorption.
[Display omitted]
► Mechanism of oxygen activation and CO oxidation on nanoporous Au (NPG). ► Oxygen is activated at 30
°C on NPG, forming a stable atomically adsorbed species. ► Oxygen activation depends non-linearly on the O
2 partial pressure. ► O
2 activation/stable O
act formation is rate limiting for continuous CO oxidation.
The oxidation of CO on nanoporous Au (NPG), in particular the activation of molecular O
2, was investigated by a combination of kinetic and temporal analysis of products (TAP) measurements. Continuous reaction measurements in a flow of reaction gas, at atmospheric pressure, show a catalytic behavior of the NPG, with the activity decreasing to 33% of the initial activity over 1000
min on stream. In contrast, during simultaneous pulsing of CO and O
2, the formation of CO
2 on the NPG catalyst rapidly decreased to values below the detection limit after reactive removal of the surface oxygen species present after sample preparation. Possible mechanisms explaining this discrepancy are discussed, using further information from multi-pulse TAP experiments, which revealed that molecular O
2 can be activated and stored on NPG catalyst at room temperature, though with a low probability.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2010.12.007</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>ambient temperature ; atmospheric pressure ; carbon dioxide ; Carbon monoxide ; Catalysis ; catalysts ; Chemistry ; CO oxidation ; Colloidal state and disperse state ; detection limit ; Dynamic studies ; Exact sciences and technology ; General and physical chemistry ; gold ; Kinetics ; Nanoporous Au catalysts ; Oxidation ; Oxygen ; Oxygen storage capacity (OSC) ; Porous materials ; probability ; streams ; Temporal analysis of products (TAP) ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 2011-03, Vol.278 (2), p.219-227</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23897832$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, L.C.</creatorcontrib><creatorcontrib>Jin, H.J.</creatorcontrib><creatorcontrib>Widmann, D.</creatorcontrib><creatorcontrib>Weissmüller, J.</creatorcontrib><creatorcontrib>Behm, R.J.</creatorcontrib><title>Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor</title><title>Journal of catalysis</title><description>The oxidation of CO on nanoporous Au, in particular the activation of molecular O
2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O
2 adsorption.
[Display omitted]
► Mechanism of oxygen activation and CO oxidation on nanoporous Au (NPG). ► Oxygen is activated at 30
°C on NPG, forming a stable atomically adsorbed species. ► Oxygen activation depends non-linearly on the O
2 partial pressure. ► O
2 activation/stable O
act formation is rate limiting for continuous CO oxidation.
The oxidation of CO on nanoporous Au (NPG), in particular the activation of molecular O
2, was investigated by a combination of kinetic and temporal analysis of products (TAP) measurements. Continuous reaction measurements in a flow of reaction gas, at atmospheric pressure, show a catalytic behavior of the NPG, with the activity decreasing to 33% of the initial activity over 1000
min on stream. In contrast, during simultaneous pulsing of CO and O
2, the formation of CO
2 on the NPG catalyst rapidly decreased to values below the detection limit after reactive removal of the surface oxygen species present after sample preparation. Possible mechanisms explaining this discrepancy are discussed, using further information from multi-pulse TAP experiments, which revealed that molecular O
2 can be activated and stored on NPG catalyst at room temperature, though with a low probability.</description><subject>ambient temperature</subject><subject>atmospheric pressure</subject><subject>carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>Chemistry</subject><subject>CO oxidation</subject><subject>Colloidal state and disperse state</subject><subject>detection limit</subject><subject>Dynamic studies</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>gold</subject><subject>Kinetics</subject><subject>Nanoporous Au catalysts</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen storage capacity (OSC)</subject><subject>Porous materials</subject><subject>probability</subject><subject>streams</subject><subject>Temporal analysis of products (TAP)</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wBuD4GXnSbq0KXgzNr9AUHC7DqdpMlK0mUkr-u9NmXhpOBAIz3lPzkPIOYMZA1Zct7NWYz_jMD7wGUB5QCYMKsh4Uc0PyQSAs6wSrDwmJzG2AIwJISdktfru8N1pGvuhcSZSb-nymfov12DvfEdTddj5nQ9-iHQx0CG6bkuRrhcvNBjUvQ-n5MjiWzRnv_eUbO5u18uH7On5_nG5eMr0XM77rCmw4QVKEGWNNTDMeTqV5WB1UwkNUheWsUYAlnVtWM7nphbGVLwu8krYfEou97m74D8GE3vV-iF0aaSSaTUhJUCC-B7SwccYjFW74N4xfCsGapSlWjXKUqMsxbhKslLT1W8yRo1vNmCnXfzr5LmsSpnzxF3sOYte4TYkZvOaggpIgpPpcfzNnjBJxKczQUXtTKdN44LRvWq8--8jP64ch2E</recordid><startdate>20110307</startdate><enddate>20110307</enddate><creator>Wang, L.C.</creator><creator>Jin, H.J.</creator><creator>Widmann, D.</creator><creator>Weissmüller, J.</creator><creator>Behm, R.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110307</creationdate><title>Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor</title><author>Wang, L.C. ; Jin, H.J. ; Widmann, D. ; Weissmüller, J. ; Behm, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ambient temperature</topic><topic>atmospheric pressure</topic><topic>carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>Chemistry</topic><topic>CO oxidation</topic><topic>Colloidal state and disperse state</topic><topic>detection limit</topic><topic>Dynamic studies</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>gold</topic><topic>Kinetics</topic><topic>Nanoporous Au catalysts</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen storage capacity (OSC)</topic><topic>Porous materials</topic><topic>probability</topic><topic>streams</topic><topic>Temporal analysis of products (TAP)</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, L.C.</creatorcontrib><creatorcontrib>Jin, H.J.</creatorcontrib><creatorcontrib>Widmann, D.</creatorcontrib><creatorcontrib>Weissmüller, J.</creatorcontrib><creatorcontrib>Behm, R.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, L.C.</au><au>Jin, H.J.</au><au>Widmann, D.</au><au>Weissmüller, J.</au><au>Behm, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor</atitle><jtitle>Journal of catalysis</jtitle><date>2011-03-07</date><risdate>2011</risdate><volume>278</volume><issue>2</issue><spage>219</spage><epage>227</epage><pages>219-227</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>The oxidation of CO on nanoporous Au, in particular the activation of molecular O
2, was investigated by a combination of kinetic and TAP measurements, showing the formation of stable adsorbed active oxygen via dissociative O
2 adsorption.
[Display omitted]
► Mechanism of oxygen activation and CO oxidation on nanoporous Au (NPG). ► Oxygen is activated at 30
°C on NPG, forming a stable atomically adsorbed species. ► Oxygen activation depends non-linearly on the O
2 partial pressure. ► O
2 activation/stable O
act formation is rate limiting for continuous CO oxidation.
The oxidation of CO on nanoporous Au (NPG), in particular the activation of molecular O
2, was investigated by a combination of kinetic and temporal analysis of products (TAP) measurements. Continuous reaction measurements in a flow of reaction gas, at atmospheric pressure, show a catalytic behavior of the NPG, with the activity decreasing to 33% of the initial activity over 1000
min on stream. In contrast, during simultaneous pulsing of CO and O
2, the formation of CO
2 on the NPG catalyst rapidly decreased to values below the detection limit after reactive removal of the surface oxygen species present after sample preparation. Possible mechanisms explaining this discrepancy are discussed, using further information from multi-pulse TAP experiments, which revealed that molecular O
2 can be activated and stored on NPG catalyst at room temperature, though with a low probability.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2010.12.007</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9517 |
ispartof | Journal of catalysis, 2011-03, Vol.278 (2), p.219-227 |
issn | 0021-9517 1090-2694 |
language | eng |
recordid | cdi_proquest_journals_851758800 |
source | Elsevier |
subjects | ambient temperature atmospheric pressure carbon dioxide Carbon monoxide Catalysis catalysts Chemistry CO oxidation Colloidal state and disperse state detection limit Dynamic studies Exact sciences and technology General and physical chemistry gold Kinetics Nanoporous Au catalysts Oxidation Oxygen Oxygen storage capacity (OSC) Porous materials probability streams Temporal analysis of products (TAP) Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20studies%20of%20CO%20oxidation%20on%20nanoporous%20Au%20using%20a%20TAP%20reactor&rft.jtitle=Journal%20of%20catalysis&rft.au=Wang,%20L.C.&rft.date=2011-03-07&rft.volume=278&rft.issue=2&rft.spage=219&rft.epage=227&rft.pages=219-227&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2010.12.007&rft_dat=%3Cproquest_cross%3E2267506761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-d6ad26a8057bab01a322229f20fcd95c08c6f11d50a7bbe1324eb5ee92b6395f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=851758800&rft_id=info:pmid/&rfr_iscdi=true |