Loading…
Inverse Function Analysis Method for Fringe Pattern Profilometry
In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry....
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2009-09, Vol.58 (9), p.3305-3314 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333 |
container_end_page | 3314 |
container_issue | 9 |
container_start_page | 3305 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 58 |
creator | Yingsong Hu Jiangtao Xi Chicharo, J.F. Wenqing Cheng Zongkai Yang |
description | In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry. Based on the derived mathematical model, this paper also proposes a new algorithm, referred to as inverse function analysis (IFA) method, to reconstruct 3-D surfaces using the FPP technique. Compared with traditional methods, our algorithm has neither the requirement for the structure of projected fringe patterns nor the prior knowledge of the distortion characteristics of projection systems. The correctness of the proposed mathematical model and IFA method has been confirmed by simulation results, which are provided to demonstrate that compared with the conventional analysis methods, the measurement accuracy has been significantly improved by the IFA method, particularly when the expected sinusoidal fringe patterns are distorted by unknown factors. |
doi_str_mv | 10.1109/TIM.2009.2022382 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_856892227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5166478</ieee_id><sourcerecordid>869847423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333</originalsourceid><addsrcrecordid>eNp9kD1PAkEQhjdGExHtTWwuFlodzn7fdhoiSgKRAuvNcszpkeMWdw8T_r1LIBYWNjPFPO-bzEPINYUBpWAe5uPpgAGYNBjjBTshPSqlzo1S7JT0AGiRGyHVObmIcQUAWgndI4_j9htDxGy0bcuu9m321LpmF-uYTbH79Mus8iEbhbr9wGzmug5Dm82Cr-rGr7ELu0tyVrkm4tVx98n76Hk-fM0nby_j4dMkL7nkXS7FQpaOK4FSaAHCgQCu-cJRY6SAQiKiWC4rJZnRnBrHFqakwkA6VJpz3if3h95N8F9bjJ1d17HEpnEt-m20hTJFamZ78u5fkktgPFUn8PYPuPLbkN5PbVIVhjGmEwQHqAw-xoCV3YR67cLOUrB78zaZt3vz9mg-RW4OkTo99YtLqpLxgv8AKdt87Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856892227</pqid></control><display><type>article</type><title>Inverse Function Analysis Method for Fringe Pattern Profilometry</title><source>IEEE Xplore (Online service)</source><creator>Yingsong Hu ; Jiangtao Xi ; Chicharo, J.F. ; Wenqing Cheng ; Zongkai Yang</creator><creatorcontrib>Yingsong Hu ; Jiangtao Xi ; Chicharo, J.F. ; Wenqing Cheng ; Zongkai Yang</creatorcontrib><description>In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry. Based on the derived mathematical model, this paper also proposes a new algorithm, referred to as inverse function analysis (IFA) method, to reconstruct 3-D surfaces using the FPP technique. Compared with traditional methods, our algorithm has neither the requirement for the structure of projected fringe patterns nor the prior knowledge of the distortion characteristics of projection systems. The correctness of the proposed mathematical model and IFA method has been confirmed by simulation results, which are provided to demonstrate that compared with the conventional analysis methods, the measurement accuracy has been significantly improved by the IFA method, particularly when the expected sinusoidal fringe patterns are distorted by unknown factors.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2009.2022382</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D profile reconstruction ; Algorithms ; Analytical models ; Computer simulation ; Digital filters ; Distortion ; Distortion measurement ; Fringe pattern analysis ; fringe pattern profilometry (FPP) ; Function analysis ; Gratings ; Image analysis ; Image reconstruction ; Information analysis ; Instrumentation ; Inverse ; inverse function analysis (IFA) ; Mathematical model ; Mathematical models ; Pattern analysis ; phase shifting profilometry ; Projection ; Studies ; Surface reconstruction</subject><ispartof>IEEE transactions on instrumentation and measurement, 2009-09, Vol.58 (9), p.3305-3314</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333</citedby><cites>FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5166478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Yingsong Hu</creatorcontrib><creatorcontrib>Jiangtao Xi</creatorcontrib><creatorcontrib>Chicharo, J.F.</creatorcontrib><creatorcontrib>Wenqing Cheng</creatorcontrib><creatorcontrib>Zongkai Yang</creatorcontrib><title>Inverse Function Analysis Method for Fringe Pattern Profilometry</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry. Based on the derived mathematical model, this paper also proposes a new algorithm, referred to as inverse function analysis (IFA) method, to reconstruct 3-D surfaces using the FPP technique. Compared with traditional methods, our algorithm has neither the requirement for the structure of projected fringe patterns nor the prior knowledge of the distortion characteristics of projection systems. The correctness of the proposed mathematical model and IFA method has been confirmed by simulation results, which are provided to demonstrate that compared with the conventional analysis methods, the measurement accuracy has been significantly improved by the IFA method, particularly when the expected sinusoidal fringe patterns are distorted by unknown factors.</description><subject>3-D profile reconstruction</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Computer simulation</subject><subject>Digital filters</subject><subject>Distortion</subject><subject>Distortion measurement</subject><subject>Fringe pattern analysis</subject><subject>fringe pattern profilometry (FPP)</subject><subject>Function analysis</subject><subject>Gratings</subject><subject>Image analysis</subject><subject>Image reconstruction</subject><subject>Information analysis</subject><subject>Instrumentation</subject><subject>Inverse</subject><subject>inverse function analysis (IFA)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Pattern analysis</subject><subject>phase shifting profilometry</subject><subject>Projection</subject><subject>Studies</subject><subject>Surface reconstruction</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PAkEQhjdGExHtTWwuFlodzn7fdhoiSgKRAuvNcszpkeMWdw8T_r1LIBYWNjPFPO-bzEPINYUBpWAe5uPpgAGYNBjjBTshPSqlzo1S7JT0AGiRGyHVObmIcQUAWgndI4_j9htDxGy0bcuu9m321LpmF-uYTbH79Mus8iEbhbr9wGzmug5Dm82Cr-rGr7ELu0tyVrkm4tVx98n76Hk-fM0nby_j4dMkL7nkXS7FQpaOK4FSaAHCgQCu-cJRY6SAQiKiWC4rJZnRnBrHFqakwkA6VJpz3if3h95N8F9bjJ1d17HEpnEt-m20hTJFamZ78u5fkktgPFUn8PYPuPLbkN5PbVIVhjGmEwQHqAw-xoCV3YR67cLOUrB78zaZt3vz9mg-RW4OkTo99YtLqpLxgv8AKdt87Q</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Yingsong Hu</creator><creator>Jiangtao Xi</creator><creator>Chicharo, J.F.</creator><creator>Wenqing Cheng</creator><creator>Zongkai Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090901</creationdate><title>Inverse Function Analysis Method for Fringe Pattern Profilometry</title><author>Yingsong Hu ; Jiangtao Xi ; Chicharo, J.F. ; Wenqing Cheng ; Zongkai Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>3-D profile reconstruction</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Computer simulation</topic><topic>Digital filters</topic><topic>Distortion</topic><topic>Distortion measurement</topic><topic>Fringe pattern analysis</topic><topic>fringe pattern profilometry (FPP)</topic><topic>Function analysis</topic><topic>Gratings</topic><topic>Image analysis</topic><topic>Image reconstruction</topic><topic>Information analysis</topic><topic>Instrumentation</topic><topic>Inverse</topic><topic>inverse function analysis (IFA)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Pattern analysis</topic><topic>phase shifting profilometry</topic><topic>Projection</topic><topic>Studies</topic><topic>Surface reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yingsong Hu</creatorcontrib><creatorcontrib>Jiangtao Xi</creatorcontrib><creatorcontrib>Chicharo, J.F.</creatorcontrib><creatorcontrib>Wenqing Cheng</creatorcontrib><creatorcontrib>Zongkai Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yingsong Hu</au><au>Jiangtao Xi</au><au>Chicharo, J.F.</au><au>Wenqing Cheng</au><au>Zongkai Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Function Analysis Method for Fringe Pattern Profilometry</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>58</volume><issue>9</issue><spage>3305</spage><epage>3314</epage><pages>3305-3314</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry. Based on the derived mathematical model, this paper also proposes a new algorithm, referred to as inverse function analysis (IFA) method, to reconstruct 3-D surfaces using the FPP technique. Compared with traditional methods, our algorithm has neither the requirement for the structure of projected fringe patterns nor the prior knowledge of the distortion characteristics of projection systems. The correctness of the proposed mathematical model and IFA method has been confirmed by simulation results, which are provided to demonstrate that compared with the conventional analysis methods, the measurement accuracy has been significantly improved by the IFA method, particularly when the expected sinusoidal fringe patterns are distorted by unknown factors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2009.2022382</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2009-09, Vol.58 (9), p.3305-3314 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_856892227 |
source | IEEE Xplore (Online service) |
subjects | 3-D profile reconstruction Algorithms Analytical models Computer simulation Digital filters Distortion Distortion measurement Fringe pattern analysis fringe pattern profilometry (FPP) Function analysis Gratings Image analysis Image reconstruction Information analysis Instrumentation Inverse inverse function analysis (IFA) Mathematical model Mathematical models Pattern analysis phase shifting profilometry Projection Studies Surface reconstruction |
title | Inverse Function Analysis Method for Fringe Pattern Profilometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Function%20Analysis%20Method%20for%20Fringe%20Pattern%20Profilometry&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yingsong%20Hu&rft.date=2009-09-01&rft.volume=58&rft.issue=9&rft.spage=3305&rft.epage=3314&rft.pages=3305-3314&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2009.2022382&rft_dat=%3Cproquest_ieee_%3E869847423%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856892227&rft_id=info:pmid/&rft_ieee_id=5166478&rfr_iscdi=true |