Loading…

Inverse Function Analysis Method for Fringe Pattern Profilometry

In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2009-09, Vol.58 (9), p.3305-3314
Main Authors: Yingsong Hu, Jiangtao Xi, Chicharo, J.F., Wenqing Cheng, Zongkai Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333
cites cdi_FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333
container_end_page 3314
container_issue 9
container_start_page 3305
container_title IEEE transactions on instrumentation and measurement
container_volume 58
creator Yingsong Hu
Jiangtao Xi
Chicharo, J.F.
Wenqing Cheng
Zongkai Yang
description In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry. Based on the derived mathematical model, this paper also proposes a new algorithm, referred to as inverse function analysis (IFA) method, to reconstruct 3-D surfaces using the FPP technique. Compared with traditional methods, our algorithm has neither the requirement for the structure of projected fringe patterns nor the prior knowledge of the distortion characteristics of projection systems. The correctness of the proposed mathematical model and IFA method has been confirmed by simulation results, which are provided to demonstrate that compared with the conventional analysis methods, the measurement accuracy has been significantly improved by the IFA method, particularly when the expected sinusoidal fringe patterns are distorted by unknown factors.
doi_str_mv 10.1109/TIM.2009.2022382
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_856892227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5166478</ieee_id><sourcerecordid>869847423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333</originalsourceid><addsrcrecordid>eNp9kD1PAkEQhjdGExHtTWwuFlodzn7fdhoiSgKRAuvNcszpkeMWdw8T_r1LIBYWNjPFPO-bzEPINYUBpWAe5uPpgAGYNBjjBTshPSqlzo1S7JT0AGiRGyHVObmIcQUAWgndI4_j9htDxGy0bcuu9m321LpmF-uYTbH79Mus8iEbhbr9wGzmug5Dm82Cr-rGr7ELu0tyVrkm4tVx98n76Hk-fM0nby_j4dMkL7nkXS7FQpaOK4FSaAHCgQCu-cJRY6SAQiKiWC4rJZnRnBrHFqakwkA6VJpz3if3h95N8F9bjJ1d17HEpnEt-m20hTJFamZ78u5fkktgPFUn8PYPuPLbkN5PbVIVhjGmEwQHqAw-xoCV3YR67cLOUrB78zaZt3vz9mg-RW4OkTo99YtLqpLxgv8AKdt87Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856892227</pqid></control><display><type>article</type><title>Inverse Function Analysis Method for Fringe Pattern Profilometry</title><source>IEEE Xplore (Online service)</source><creator>Yingsong Hu ; Jiangtao Xi ; Chicharo, J.F. ; Wenqing Cheng ; Zongkai Yang</creator><creatorcontrib>Yingsong Hu ; Jiangtao Xi ; Chicharo, J.F. ; Wenqing Cheng ; Zongkai Yang</creatorcontrib><description>In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry. Based on the derived mathematical model, this paper also proposes a new algorithm, referred to as inverse function analysis (IFA) method, to reconstruct 3-D surfaces using the FPP technique. Compared with traditional methods, our algorithm has neither the requirement for the structure of projected fringe patterns nor the prior knowledge of the distortion characteristics of projection systems. The correctness of the proposed mathematical model and IFA method has been confirmed by simulation results, which are provided to demonstrate that compared with the conventional analysis methods, the measurement accuracy has been significantly improved by the IFA method, particularly when the expected sinusoidal fringe patterns are distorted by unknown factors.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2009.2022382</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D profile reconstruction ; Algorithms ; Analytical models ; Computer simulation ; Digital filters ; Distortion ; Distortion measurement ; Fringe pattern analysis ; fringe pattern profilometry (FPP) ; Function analysis ; Gratings ; Image analysis ; Image reconstruction ; Information analysis ; Instrumentation ; Inverse ; inverse function analysis (IFA) ; Mathematical model ; Mathematical models ; Pattern analysis ; phase shifting profilometry ; Projection ; Studies ; Surface reconstruction</subject><ispartof>IEEE transactions on instrumentation and measurement, 2009-09, Vol.58 (9), p.3305-3314</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333</citedby><cites>FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5166478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Yingsong Hu</creatorcontrib><creatorcontrib>Jiangtao Xi</creatorcontrib><creatorcontrib>Chicharo, J.F.</creatorcontrib><creatorcontrib>Wenqing Cheng</creatorcontrib><creatorcontrib>Zongkai Yang</creatorcontrib><title>Inverse Function Analysis Method for Fringe Pattern Profilometry</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry. Based on the derived mathematical model, this paper also proposes a new algorithm, referred to as inverse function analysis (IFA) method, to reconstruct 3-D surfaces using the FPP technique. Compared with traditional methods, our algorithm has neither the requirement for the structure of projected fringe patterns nor the prior knowledge of the distortion characteristics of projection systems. The correctness of the proposed mathematical model and IFA method has been confirmed by simulation results, which are provided to demonstrate that compared with the conventional analysis methods, the measurement accuracy has been significantly improved by the IFA method, particularly when the expected sinusoidal fringe patterns are distorted by unknown factors.</description><subject>3-D profile reconstruction</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Computer simulation</subject><subject>Digital filters</subject><subject>Distortion</subject><subject>Distortion measurement</subject><subject>Fringe pattern analysis</subject><subject>fringe pattern profilometry (FPP)</subject><subject>Function analysis</subject><subject>Gratings</subject><subject>Image analysis</subject><subject>Image reconstruction</subject><subject>Information analysis</subject><subject>Instrumentation</subject><subject>Inverse</subject><subject>inverse function analysis (IFA)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Pattern analysis</subject><subject>phase shifting profilometry</subject><subject>Projection</subject><subject>Studies</subject><subject>Surface reconstruction</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PAkEQhjdGExHtTWwuFlodzn7fdhoiSgKRAuvNcszpkeMWdw8T_r1LIBYWNjPFPO-bzEPINYUBpWAe5uPpgAGYNBjjBTshPSqlzo1S7JT0AGiRGyHVObmIcQUAWgndI4_j9htDxGy0bcuu9m321LpmF-uYTbH79Mus8iEbhbr9wGzmug5Dm82Cr-rGr7ELu0tyVrkm4tVx98n76Hk-fM0nby_j4dMkL7nkXS7FQpaOK4FSaAHCgQCu-cJRY6SAQiKiWC4rJZnRnBrHFqakwkA6VJpz3if3h95N8F9bjJ1d17HEpnEt-m20hTJFamZ78u5fkktgPFUn8PYPuPLbkN5PbVIVhjGmEwQHqAw-xoCV3YR67cLOUrB78zaZt3vz9mg-RW4OkTo99YtLqpLxgv8AKdt87Q</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Yingsong Hu</creator><creator>Jiangtao Xi</creator><creator>Chicharo, J.F.</creator><creator>Wenqing Cheng</creator><creator>Zongkai Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090901</creationdate><title>Inverse Function Analysis Method for Fringe Pattern Profilometry</title><author>Yingsong Hu ; Jiangtao Xi ; Chicharo, J.F. ; Wenqing Cheng ; Zongkai Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>3-D profile reconstruction</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Computer simulation</topic><topic>Digital filters</topic><topic>Distortion</topic><topic>Distortion measurement</topic><topic>Fringe pattern analysis</topic><topic>fringe pattern profilometry (FPP)</topic><topic>Function analysis</topic><topic>Gratings</topic><topic>Image analysis</topic><topic>Image reconstruction</topic><topic>Information analysis</topic><topic>Instrumentation</topic><topic>Inverse</topic><topic>inverse function analysis (IFA)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Pattern analysis</topic><topic>phase shifting profilometry</topic><topic>Projection</topic><topic>Studies</topic><topic>Surface reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yingsong Hu</creatorcontrib><creatorcontrib>Jiangtao Xi</creatorcontrib><creatorcontrib>Chicharo, J.F.</creatorcontrib><creatorcontrib>Wenqing Cheng</creatorcontrib><creatorcontrib>Zongkai Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yingsong Hu</au><au>Jiangtao Xi</au><au>Chicharo, J.F.</au><au>Wenqing Cheng</au><au>Zongkai Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Function Analysis Method for Fringe Pattern Profilometry</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>58</volume><issue>9</issue><spage>3305</spage><epage>3314</epage><pages>3305-3314</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In this paper, we present a mathematical model that describes a general relationship between the projected signal and the deformed signal in fringe pattern profilometry (FPP) systems. The derived mathematical model proves that in theory any kind of fringe pattern could be utilized for profilometry. Based on the derived mathematical model, this paper also proposes a new algorithm, referred to as inverse function analysis (IFA) method, to reconstruct 3-D surfaces using the FPP technique. Compared with traditional methods, our algorithm has neither the requirement for the structure of projected fringe patterns nor the prior knowledge of the distortion characteristics of projection systems. The correctness of the proposed mathematical model and IFA method has been confirmed by simulation results, which are provided to demonstrate that compared with the conventional analysis methods, the measurement accuracy has been significantly improved by the IFA method, particularly when the expected sinusoidal fringe patterns are distorted by unknown factors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2009.2022382</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2009-09, Vol.58 (9), p.3305-3314
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_856892227
source IEEE Xplore (Online service)
subjects 3-D profile reconstruction
Algorithms
Analytical models
Computer simulation
Digital filters
Distortion
Distortion measurement
Fringe pattern analysis
fringe pattern profilometry (FPP)
Function analysis
Gratings
Image analysis
Image reconstruction
Information analysis
Instrumentation
Inverse
inverse function analysis (IFA)
Mathematical model
Mathematical models
Pattern analysis
phase shifting profilometry
Projection
Studies
Surface reconstruction
title Inverse Function Analysis Method for Fringe Pattern Profilometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Function%20Analysis%20Method%20for%20Fringe%20Pattern%20Profilometry&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yingsong%20Hu&rft.date=2009-09-01&rft.volume=58&rft.issue=9&rft.spage=3305&rft.epage=3314&rft.pages=3305-3314&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2009.2022382&rft_dat=%3Cproquest_ieee_%3E869847423%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-54b5ca364e547404a040373ba19954085eee4ddf65297319a2b9c14905eef7333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856892227&rft_id=info:pmid/&rft_ieee_id=5166478&rfr_iscdi=true