Loading…
Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating
In this paper, we propose and demonstrate an approach to optically generating chirped microwave pulses with tunable chirp profile based on optical spectral shaping using a Sagnac loop filter incorporating a chirped fiber Bragg grating (CFBG) and linear wavelength-to-time mapping in a dispersive elem...
Saved in:
Published in: | Journal of lightwave technology 2009-08, Vol.27 (16), p.3336-3341 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose and demonstrate an approach to optically generating chirped microwave pulses with tunable chirp profile based on optical spectral shaping using a Sagnac loop filter incorporating a chirped fiber Bragg grating (CFBG) and linear wavelength-to-time mapping in a dispersive element. In the proposed approach, the optical power spectrum of an ultrashort optical pulse is shaped by a CFBG-incorporated Sagnac loop mirror that has a reflection spectral response with a linearly increasing or decreasing free spectral range. The spectrum-shaped optical pulse is then sent to a dispersive element to perform the linear wavelength-to-time mapping. A chirped microwave pulse with the pulse shape identical to that of the shaped spectrum is obtained at the output of a high-speed photodector. The central frequency and the chirp profile of the generated chirped microwave pulse can be controlled by simply tuning the time delay in the Sagnac loop mirror. A simple mathematical model to describe the chirped microwave pulse generation is developed. Numerical simulations and a proof-of-principle experiment are implemented to verify the proposed approach. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2008.2010561 |