Loading…

Practical scheduling for call center operations

A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for...

Full description

Saved in:
Bibliographic Details
Published in:Omega (Oxford) 2011-10, Vol.39 (5), p.550-557
Main Author: Dietz, Dennis C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073
cites cdi_FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073
container_end_page 557
container_issue 5
container_start_page 550
container_title Omega (Oxford)
container_volume 39
creator Dietz, Dennis C.
description A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for a sequence of time intervals with varying call volumes, handling times, and relative agent availabilities. These staffing requirements populate a quadratic programming model for determining the distribution of agent tours that will maximize the fraction of offered calls beginning service within a target response time, subject to side constraints on tour type quantities. The optimal distribution is scaled to reflect the total number of scheduled agents, and a near-optimal integer solution is derived using rounding thresholds found by successive one-dimensional searches. This novel approach has been successfully implemented in large service centers at Qwest Communications and could easily be adapted to other operational environments.
doi_str_mv 10.1016/j.omega.2010.12.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_858801000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305048310001556</els_id><sourcerecordid>2303886821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoLvBTBY3cnTdLEgwcRPxH0oOeQptM1ZbetSVfw3ztrxaOByYPhvTczj7FTDgsOvFy2i36DK7coYNcpFgB8j8240SJXhZb7bAYCVA7SiEN2lFILxDAgZmz5Ep0fg3frLPl3rLfr0K2ypo8ZtdaZx27EmPUDRjeGvkvH7KBx64Qnvzhnb7c3r9f3-dPz3cP11VPuVSHHXIMEyWt0skIlLpqK68qryhWcNyUKoYWCwkBVl_RkaXxjSokSy1o4rUGLOTubfIfYf2wxjbbtt7GjkdYoY-hOACKJieRjn1LExg4xbFz8shzsLhjb2p9g7C4YywtLZ5PqcVJFHND_SRCxncifVjhxQd8XFSk5QaBSVMMOFViltH0fN2R2_runS5RYE13nQ_ozLYQpueKGeJcTDym0z4DRJh-w81iHiH60dR_-XfobFWyQ4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858801000</pqid></control><display><type>article</type><title>Practical scheduling for call center operations</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Dietz, Dennis C.</creator><creatorcontrib>Dietz, Dennis C.</creatorcontrib><description>A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for a sequence of time intervals with varying call volumes, handling times, and relative agent availabilities. These staffing requirements populate a quadratic programming model for determining the distribution of agent tours that will maximize the fraction of offered calls beginning service within a target response time, subject to side constraints on tour type quantities. The optimal distribution is scaled to reflect the total number of scheduled agents, and a near-optimal integer solution is derived using rounding thresholds found by successive one-dimensional searches. This novel approach has been successfully implemented in large service centers at Qwest Communications and could easily be adapted to other operational environments.</description><identifier>ISSN: 0305-0483</identifier><identifier>EISSN: 1873-5274</identifier><identifier>DOI: 10.1016/j.omega.2010.12.001</identifier><identifier>CODEN: OMEGA6</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Call centers ; Exact sciences and technology ; Firm modelling ; Markov analysis ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Operations management ; Quadratic programming ; Queueing ; Queueing Quadratic programming Scheduling Operations management ; Queuing theory ; Queuing theory. Traffic theory ; Reliability theory. Replacement problems ; Resource allocation ; Scheduling ; Studies ; Workforce planning</subject><ispartof>Omega (Oxford), 2011-10, Vol.39 (5), p.550-557</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073</citedby><cites>FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23861518$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejomega/v_3a39_3ay_3a2011_3ai_3a5_3ap_3a550-557.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dietz, Dennis C.</creatorcontrib><title>Practical scheduling for call center operations</title><title>Omega (Oxford)</title><description>A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for a sequence of time intervals with varying call volumes, handling times, and relative agent availabilities. These staffing requirements populate a quadratic programming model for determining the distribution of agent tours that will maximize the fraction of offered calls beginning service within a target response time, subject to side constraints on tour type quantities. The optimal distribution is scaled to reflect the total number of scheduled agents, and a near-optimal integer solution is derived using rounding thresholds found by successive one-dimensional searches. This novel approach has been successfully implemented in large service centers at Qwest Communications and could easily be adapted to other operational environments.</description><subject>Applied sciences</subject><subject>Call centers</subject><subject>Exact sciences and technology</subject><subject>Firm modelling</subject><subject>Markov analysis</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations management</subject><subject>Quadratic programming</subject><subject>Queueing</subject><subject>Queueing Quadratic programming Scheduling Operations management</subject><subject>Queuing theory</subject><subject>Queuing theory. Traffic theory</subject><subject>Reliability theory. Replacement problems</subject><subject>Resource allocation</subject><subject>Scheduling</subject><subject>Studies</subject><subject>Workforce planning</subject><issn>0305-0483</issn><issn>1873-5274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoLvBTBY3cnTdLEgwcRPxH0oOeQptM1ZbetSVfw3ztrxaOByYPhvTczj7FTDgsOvFy2i36DK7coYNcpFgB8j8240SJXhZb7bAYCVA7SiEN2lFILxDAgZmz5Ep0fg3frLPl3rLfr0K2ypo8ZtdaZx27EmPUDRjeGvkvH7KBx64Qnvzhnb7c3r9f3-dPz3cP11VPuVSHHXIMEyWt0skIlLpqK68qryhWcNyUKoYWCwkBVl_RkaXxjSokSy1o4rUGLOTubfIfYf2wxjbbtt7GjkdYoY-hOACKJieRjn1LExg4xbFz8shzsLhjb2p9g7C4YywtLZ5PqcVJFHND_SRCxncifVjhxQd8XFSk5QaBSVMMOFViltH0fN2R2_runS5RYE13nQ_ozLYQpueKGeJcTDym0z4DRJh-w81iHiH60dR_-XfobFWyQ4Q</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Dietz, Dennis C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20111001</creationdate><title>Practical scheduling for call center operations</title><author>Dietz, Dennis C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Call centers</topic><topic>Exact sciences and technology</topic><topic>Firm modelling</topic><topic>Markov analysis</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations management</topic><topic>Quadratic programming</topic><topic>Queueing</topic><topic>Queueing Quadratic programming Scheduling Operations management</topic><topic>Queuing theory</topic><topic>Queuing theory. Traffic theory</topic><topic>Reliability theory. Replacement problems</topic><topic>Resource allocation</topic><topic>Scheduling</topic><topic>Studies</topic><topic>Workforce planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietz, Dennis C.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Omega (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietz, Dennis C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical scheduling for call center operations</atitle><jtitle>Omega (Oxford)</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>39</volume><issue>5</issue><spage>550</spage><epage>557</epage><pages>550-557</pages><issn>0305-0483</issn><eissn>1873-5274</eissn><coden>OMEGA6</coden><abstract>A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for a sequence of time intervals with varying call volumes, handling times, and relative agent availabilities. These staffing requirements populate a quadratic programming model for determining the distribution of agent tours that will maximize the fraction of offered calls beginning service within a target response time, subject to side constraints on tour type quantities. The optimal distribution is scaled to reflect the total number of scheduled agents, and a near-optimal integer solution is derived using rounding thresholds found by successive one-dimensional searches. This novel approach has been successfully implemented in large service centers at Qwest Communications and could easily be adapted to other operational environments.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.omega.2010.12.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0483
ispartof Omega (Oxford), 2011-10, Vol.39 (5), p.550-557
issn 0305-0483
1873-5274
language eng
recordid cdi_proquest_journals_858801000
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Applied sciences
Call centers
Exact sciences and technology
Firm modelling
Markov analysis
Mathematical programming
Operational research and scientific management
Operational research. Management science
Operations management
Quadratic programming
Queueing
Queueing Quadratic programming Scheduling Operations management
Queuing theory
Queuing theory. Traffic theory
Reliability theory. Replacement problems
Resource allocation
Scheduling
Studies
Workforce planning
title Practical scheduling for call center operations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20scheduling%20for%20call%20center%20operations&rft.jtitle=Omega%20(Oxford)&rft.au=Dietz,%20Dennis%20C.&rft.date=2011-10-01&rft.volume=39&rft.issue=5&rft.spage=550&rft.epage=557&rft.pages=550-557&rft.issn=0305-0483&rft.eissn=1873-5274&rft.coden=OMEGA6&rft_id=info:doi/10.1016/j.omega.2010.12.001&rft_dat=%3Cproquest_cross%3E2303886821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858801000&rft_id=info:pmid/&rfr_iscdi=true