Loading…
Practical scheduling for call center operations
A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for...
Saved in:
Published in: | Omega (Oxford) 2011-10, Vol.39 (5), p.550-557 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073 |
container_end_page | 557 |
container_issue | 5 |
container_start_page | 550 |
container_title | Omega (Oxford) |
container_volume | 39 |
creator | Dietz, Dennis C. |
description | A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for a sequence of time intervals with varying call volumes, handling times, and relative agent availabilities. These staffing requirements populate a quadratic programming model for determining the distribution of agent tours that will maximize the fraction of offered calls beginning service within a target response time, subject to side constraints on tour type quantities. The optimal distribution is scaled to reflect the total number of scheduled agents, and a near-optimal integer solution is derived using rounding thresholds found by successive one-dimensional searches. This novel approach has been successfully implemented in large service centers at Qwest Communications and could easily be adapted to other operational environments. |
doi_str_mv | 10.1016/j.omega.2010.12.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_858801000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305048310001556</els_id><sourcerecordid>2303886821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoLvBTBY3cnTdLEgwcRPxH0oOeQptM1ZbetSVfw3ztrxaOByYPhvTczj7FTDgsOvFy2i36DK7coYNcpFgB8j8240SJXhZb7bAYCVA7SiEN2lFILxDAgZmz5Ep0fg3frLPl3rLfr0K2ypo8ZtdaZx27EmPUDRjeGvkvH7KBx64Qnvzhnb7c3r9f3-dPz3cP11VPuVSHHXIMEyWt0skIlLpqK68qryhWcNyUKoYWCwkBVl_RkaXxjSokSy1o4rUGLOTubfIfYf2wxjbbtt7GjkdYoY-hOACKJieRjn1LExg4xbFz8shzsLhjb2p9g7C4YywtLZ5PqcVJFHND_SRCxncifVjhxQd8XFSk5QaBSVMMOFViltH0fN2R2_runS5RYE13nQ_ozLYQpueKGeJcTDym0z4DRJh-w81iHiH60dR_-XfobFWyQ4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858801000</pqid></control><display><type>article</type><title>Practical scheduling for call center operations</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Dietz, Dennis C.</creator><creatorcontrib>Dietz, Dennis C.</creatorcontrib><description>A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for a sequence of time intervals with varying call volumes, handling times, and relative agent availabilities. These staffing requirements populate a quadratic programming model for determining the distribution of agent tours that will maximize the fraction of offered calls beginning service within a target response time, subject to side constraints on tour type quantities. The optimal distribution is scaled to reflect the total number of scheduled agents, and a near-optimal integer solution is derived using rounding thresholds found by successive one-dimensional searches. This novel approach has been successfully implemented in large service centers at Qwest Communications and could easily be adapted to other operational environments.</description><identifier>ISSN: 0305-0483</identifier><identifier>EISSN: 1873-5274</identifier><identifier>DOI: 10.1016/j.omega.2010.12.001</identifier><identifier>CODEN: OMEGA6</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Call centers ; Exact sciences and technology ; Firm modelling ; Markov analysis ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Operations management ; Quadratic programming ; Queueing ; Queueing Quadratic programming Scheduling Operations management ; Queuing theory ; Queuing theory. Traffic theory ; Reliability theory. Replacement problems ; Resource allocation ; Scheduling ; Studies ; Workforce planning</subject><ispartof>Omega (Oxford), 2011-10, Vol.39 (5), p.550-557</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073</citedby><cites>FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23861518$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejomega/v_3a39_3ay_3a2011_3ai_3a5_3ap_3a550-557.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dietz, Dennis C.</creatorcontrib><title>Practical scheduling for call center operations</title><title>Omega (Oxford)</title><description>A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for a sequence of time intervals with varying call volumes, handling times, and relative agent availabilities. These staffing requirements populate a quadratic programming model for determining the distribution of agent tours that will maximize the fraction of offered calls beginning service within a target response time, subject to side constraints on tour type quantities. The optimal distribution is scaled to reflect the total number of scheduled agents, and a near-optimal integer solution is derived using rounding thresholds found by successive one-dimensional searches. This novel approach has been successfully implemented in large service centers at Qwest Communications and could easily be adapted to other operational environments.</description><subject>Applied sciences</subject><subject>Call centers</subject><subject>Exact sciences and technology</subject><subject>Firm modelling</subject><subject>Markov analysis</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations management</subject><subject>Quadratic programming</subject><subject>Queueing</subject><subject>Queueing Quadratic programming Scheduling Operations management</subject><subject>Queuing theory</subject><subject>Queuing theory. Traffic theory</subject><subject>Reliability theory. Replacement problems</subject><subject>Resource allocation</subject><subject>Scheduling</subject><subject>Studies</subject><subject>Workforce planning</subject><issn>0305-0483</issn><issn>1873-5274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoLvBTBY3cnTdLEgwcRPxH0oOeQptM1ZbetSVfw3ztrxaOByYPhvTczj7FTDgsOvFy2i36DK7coYNcpFgB8j8240SJXhZb7bAYCVA7SiEN2lFILxDAgZmz5Ep0fg3frLPl3rLfr0K2ypo8ZtdaZx27EmPUDRjeGvkvH7KBx64Qnvzhnb7c3r9f3-dPz3cP11VPuVSHHXIMEyWt0skIlLpqK68qryhWcNyUKoYWCwkBVl_RkaXxjSokSy1o4rUGLOTubfIfYf2wxjbbtt7GjkdYoY-hOACKJieRjn1LExg4xbFz8shzsLhjb2p9g7C4YywtLZ5PqcVJFHND_SRCxncifVjhxQd8XFSk5QaBSVMMOFViltH0fN2R2_runS5RYE13nQ_ozLYQpueKGeJcTDym0z4DRJh-w81iHiH60dR_-XfobFWyQ4Q</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Dietz, Dennis C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20111001</creationdate><title>Practical scheduling for call center operations</title><author>Dietz, Dennis C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Call centers</topic><topic>Exact sciences and technology</topic><topic>Firm modelling</topic><topic>Markov analysis</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations management</topic><topic>Quadratic programming</topic><topic>Queueing</topic><topic>Queueing Quadratic programming Scheduling Operations management</topic><topic>Queuing theory</topic><topic>Queuing theory. Traffic theory</topic><topic>Reliability theory. Replacement problems</topic><topic>Resource allocation</topic><topic>Scheduling</topic><topic>Studies</topic><topic>Workforce planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietz, Dennis C.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Omega (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietz, Dennis C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical scheduling for call center operations</atitle><jtitle>Omega (Oxford)</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>39</volume><issue>5</issue><spage>550</spage><epage>557</epage><pages>550-557</pages><issn>0305-0483</issn><eissn>1873-5274</eissn><coden>OMEGA6</coden><abstract>A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of service agents to candidate tour types and start times in an inbound call center. A stationary Markovian queueing model with customer abandonment is employed to determine required staffing levels for a sequence of time intervals with varying call volumes, handling times, and relative agent availabilities. These staffing requirements populate a quadratic programming model for determining the distribution of agent tours that will maximize the fraction of offered calls beginning service within a target response time, subject to side constraints on tour type quantities. The optimal distribution is scaled to reflect the total number of scheduled agents, and a near-optimal integer solution is derived using rounding thresholds found by successive one-dimensional searches. This novel approach has been successfully implemented in large service centers at Qwest Communications and could easily be adapted to other operational environments.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.omega.2010.12.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0483 |
ispartof | Omega (Oxford), 2011-10, Vol.39 (5), p.550-557 |
issn | 0305-0483 1873-5274 |
language | eng |
recordid | cdi_proquest_journals_858801000 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Applied sciences Call centers Exact sciences and technology Firm modelling Markov analysis Mathematical programming Operational research and scientific management Operational research. Management science Operations management Quadratic programming Queueing Queueing Quadratic programming Scheduling Operations management Queuing theory Queuing theory. Traffic theory Reliability theory. Replacement problems Resource allocation Scheduling Studies Workforce planning |
title | Practical scheduling for call center operations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20scheduling%20for%20call%20center%20operations&rft.jtitle=Omega%20(Oxford)&rft.au=Dietz,%20Dennis%20C.&rft.date=2011-10-01&rft.volume=39&rft.issue=5&rft.spage=550&rft.epage=557&rft.pages=550-557&rft.issn=0305-0483&rft.eissn=1873-5274&rft.coden=OMEGA6&rft_id=info:doi/10.1016/j.omega.2010.12.001&rft_dat=%3Cproquest_cross%3E2303886821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-704041dea4be539fb17bc5ba211f6e337350280bd6666468cf864e4e6d3a77073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858801000&rft_id=info:pmid/&rfr_iscdi=true |