Loading…
Simulation of Electromagnetic Wave Propagation Through Plasma Sheath Using the Moving-Window Finite-Difference Time-Domain Method
When a hypersonic vehicle reenters the Earth's atmosphere, plasma sheath generated by its collision with ambient air affects the electromagnetic (EM) wave propagation. To understand such effects is very important for the design of communication, telemetry, and satellite navigation systems. In t...
Saved in:
Published in: | IEEE transactions on plasma science 2011-03, Vol.39 (3), p.852-855 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When a hypersonic vehicle reenters the Earth's atmosphere, plasma sheath generated by its collision with ambient air affects the electromagnetic (EM) wave propagation. To understand such effects is very important for the design of communication, telemetry, and satellite navigation systems. In this paper, the transmission coefficient of the plasma sheath is investigated using the finite-difference time-domain (FDTD) method. The moving-window (MW) technology is employed to reduce the massive computational resources required by the large model. Results show that the MW-FDTD requires much less computational resources, as compared to the full FDTD simulation. Investigation on a hypersonic vehicle's plasma sheath shows that more EM energy could pass through the plasma sheath at the tail of the hypersonic vehicle. There is a certain frequency band with serious EM attenuation, which should be avoided when designing the communication system. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2010.2098890 |