Loading…

A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis

The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neith...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2009-03, Vol.57 (3), p.868-877
Main Authors: Sandberg, J., Hansson-Sandsten, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053
cites cdi_FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053
container_end_page 877
container_issue 3
container_start_page 868
container_title IEEE transactions on signal processing
container_volume 57
creator Sandberg, J.
Hansson-Sandsten, M.
description The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neither of these definitions perfectly resembles the usefulness of the continuous ambiguity domain. In this paper, we present some of the most frequently used definitions of the ambiguity domain in discrete time: the Claasen-Mecklenbrauker, the Jeong-Williams, and the Nuttall definitions. For the first time, we prove their equivalence within some necessary conditions and we present theorems that justify their usage.
doi_str_mv 10.1109/TSP.2008.2009892
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_861132473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4685632</ieee_id><sourcerecordid>875040598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053</originalsourceid><addsrcrecordid>eNp9kdGL1DAQxosoeJ6-C74UQX3qmTRpkj7u7XkqLCjcCr6FaXaiWdqmJi3H_vfOsss--ODDJBPym4-Z-YriNWc3nLP24_bh-03NmDkerWnrJ8UVbyWvmNTqKeWsEVVj9M_nxYuc94xxKVt1VexX5ToOE6SQ41je4vyIOJZ3wXtMOM6UZZdwxnI1dOHXEuZDeRcHCMSgD2OYQxxzSc-HObrfkOfgym0YsLpP-GfB0R3K1Qj9IYf8snjmoc_46nxfFz_uP23XX6rNt89f16tN5WRTzxU3HplQ0NRaK8PAM3Cd0g3rnGTCeG8kVzVopXeUN04b6WGHQhjk6jjmdbE56eZHnJbOTikMkA42QrD9MlF0FDajZVqB8N3OknRrJUNpASVYhwidbztQrSa5Dye5KUWaKM92oJ1g38OIccnWUGuSNa0h8v1_SSFN0xjBCHz7D7iPS6I1kZriXNRSC4LYCXIp5pzQXwbhzB4tt2S5PVpuz5ZTybuzLmQHvU8wupAvdTWXmhsmiXtz4gIiXr6lMo0StfgLCFq1CA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132473</pqid></control><display><type>article</type><title>A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sandberg, J. ; Hansson-Sandsten, M.</creator><creatorcontrib>Sandberg, J. ; Hansson-Sandsten, M.</creatorcontrib><description>The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neither of these definitions perfectly resembles the usefulness of the continuous ambiguity domain. In this paper, we present some of the most frequently used definitions of the ambiguity domain in discrete time: the Claasen-Mecklenbrauker, the Jeong-Williams, and the Nuttall definitions. For the first time, we prove their equivalence within some necessary conditions and we present theorems that justify their usage.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2009892</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ambiguity ; Ambiguity domain ; Applied sciences ; Claasen-MecklenbrÄuker ; Councils ; Covariance ; covariance function estimation ; Discrete transforms ; discrete-time discrete-frequency ; Estimating ; Exact sciences and technology ; Information, signal and communications theory ; Jeong-Williams ; Kernel ; Matematik ; Mathematics ; Miscellaneous ; Natural Sciences ; Naturvetenskap ; nonstationary random processes ; Nuttall ; Probability Theory and Statistics ; Random processes ; Sannolikhetsteori och statistik ; Shape ; Signal processing ; Statistics ; Stochastic processes ; Stochasticity ; Telecommunications and information theory ; Theorems ; Time frequency analysis ; Visualization</subject><ispartof>IEEE transactions on signal processing, 2009-03, Vol.57 (3), p.868-877</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053</citedby><cites>FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4685632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21471804$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/1301835$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandberg, J.</creatorcontrib><creatorcontrib>Hansson-Sandsten, M.</creatorcontrib><title>A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neither of these definitions perfectly resembles the usefulness of the continuous ambiguity domain. In this paper, we present some of the most frequently used definitions of the ambiguity domain in discrete time: the Claasen-Mecklenbrauker, the Jeong-Williams, and the Nuttall definitions. For the first time, we prove their equivalence within some necessary conditions and we present theorems that justify their usage.</description><subject>Ambiguity</subject><subject>Ambiguity domain</subject><subject>Applied sciences</subject><subject>Claasen-MecklenbrÄuker</subject><subject>Councils</subject><subject>Covariance</subject><subject>covariance function estimation</subject><subject>Discrete transforms</subject><subject>discrete-time discrete-frequency</subject><subject>Estimating</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Jeong-Williams</subject><subject>Kernel</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>nonstationary random processes</subject><subject>Nuttall</subject><subject>Probability Theory and Statistics</subject><subject>Random processes</subject><subject>Sannolikhetsteori och statistik</subject><subject>Shape</subject><subject>Signal processing</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Telecommunications and information theory</subject><subject>Theorems</subject><subject>Time frequency analysis</subject><subject>Visualization</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kdGL1DAQxosoeJ6-C74UQX3qmTRpkj7u7XkqLCjcCr6FaXaiWdqmJi3H_vfOsss--ODDJBPym4-Z-YriNWc3nLP24_bh-03NmDkerWnrJ8UVbyWvmNTqKeWsEVVj9M_nxYuc94xxKVt1VexX5ToOE6SQ41je4vyIOJZ3wXtMOM6UZZdwxnI1dOHXEuZDeRcHCMSgD2OYQxxzSc-HObrfkOfgym0YsLpP-GfB0R3K1Qj9IYf8snjmoc_46nxfFz_uP23XX6rNt89f16tN5WRTzxU3HplQ0NRaK8PAM3Cd0g3rnGTCeG8kVzVopXeUN04b6WGHQhjk6jjmdbE56eZHnJbOTikMkA42QrD9MlF0FDajZVqB8N3OknRrJUNpASVYhwidbztQrSa5Dye5KUWaKM92oJ1g38OIccnWUGuSNa0h8v1_SSFN0xjBCHz7D7iPS6I1kZriXNRSC4LYCXIp5pzQXwbhzB4tt2S5PVpuz5ZTybuzLmQHvU8wupAvdTWXmhsmiXtz4gIiXr6lMo0StfgLCFq1CA</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Sandberg, J.</creator><creator>Hansson-Sandsten, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>20090301</creationdate><title>A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis</title><author>Sandberg, J. ; Hansson-Sandsten, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ambiguity</topic><topic>Ambiguity domain</topic><topic>Applied sciences</topic><topic>Claasen-MecklenbrÄuker</topic><topic>Councils</topic><topic>Covariance</topic><topic>covariance function estimation</topic><topic>Discrete transforms</topic><topic>discrete-time discrete-frequency</topic><topic>Estimating</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Jeong-Williams</topic><topic>Kernel</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>nonstationary random processes</topic><topic>Nuttall</topic><topic>Probability Theory and Statistics</topic><topic>Random processes</topic><topic>Sannolikhetsteori och statistik</topic><topic>Shape</topic><topic>Signal processing</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Telecommunications and information theory</topic><topic>Theorems</topic><topic>Time frequency analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandberg, J.</creatorcontrib><creatorcontrib>Hansson-Sandsten, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandberg, J.</au><au>Hansson-Sandsten, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>57</volume><issue>3</issue><spage>868</spage><epage>877</epage><pages>868-877</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neither of these definitions perfectly resembles the usefulness of the continuous ambiguity domain. In this paper, we present some of the most frequently used definitions of the ambiguity domain in discrete time: the Claasen-Mecklenbrauker, the Jeong-Williams, and the Nuttall definitions. For the first time, we prove their equivalence within some necessary conditions and we present theorems that justify their usage.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2009892</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-03, Vol.57 (3), p.868-877
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_861132473
source IEEE Electronic Library (IEL) Journals
subjects Ambiguity
Ambiguity domain
Applied sciences
Claasen-MecklenbrÄuker
Councils
Covariance
covariance function estimation
Discrete transforms
discrete-time discrete-frequency
Estimating
Exact sciences and technology
Information, signal and communications theory
Jeong-Williams
Kernel
Matematik
Mathematics
Miscellaneous
Natural Sciences
Naturvetenskap
nonstationary random processes
Nuttall
Probability Theory and Statistics
Random processes
Sannolikhetsteori och statistik
Shape
Signal processing
Statistics
Stochastic processes
Stochasticity
Telecommunications and information theory
Theorems
Time frequency analysis
Visualization
title A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20Between%20Different%20Discrete%20Ambiguity%20Domain%20Definitions%20in%20Stochastic%20Time-Frequency%20Analysis&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Sandberg,%20J.&rft.date=2009-03-01&rft.volume=57&rft.issue=3&rft.spage=868&rft.epage=877&rft.pages=868-877&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2009892&rft_dat=%3Cproquest_swepu%3E875040598%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861132473&rft_id=info:pmid/&rft_ieee_id=4685632&rfr_iscdi=true