Loading…
A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis
The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neith...
Saved in:
Published in: | IEEE transactions on signal processing 2009-03, Vol.57 (3), p.868-877 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053 |
container_end_page | 877 |
container_issue | 3 |
container_start_page | 868 |
container_title | IEEE transactions on signal processing |
container_volume | 57 |
creator | Sandberg, J. Hansson-Sandsten, M. |
description | The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neither of these definitions perfectly resembles the usefulness of the continuous ambiguity domain. In this paper, we present some of the most frequently used definitions of the ambiguity domain in discrete time: the Claasen-Mecklenbrauker, the Jeong-Williams, and the Nuttall definitions. For the first time, we prove their equivalence within some necessary conditions and we present theorems that justify their usage. |
doi_str_mv | 10.1109/TSP.2008.2009892 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_861132473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4685632</ieee_id><sourcerecordid>875040598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053</originalsourceid><addsrcrecordid>eNp9kdGL1DAQxosoeJ6-C74UQX3qmTRpkj7u7XkqLCjcCr6FaXaiWdqmJi3H_vfOsss--ODDJBPym4-Z-YriNWc3nLP24_bh-03NmDkerWnrJ8UVbyWvmNTqKeWsEVVj9M_nxYuc94xxKVt1VexX5ToOE6SQ41je4vyIOJZ3wXtMOM6UZZdwxnI1dOHXEuZDeRcHCMSgD2OYQxxzSc-HObrfkOfgym0YsLpP-GfB0R3K1Qj9IYf8snjmoc_46nxfFz_uP23XX6rNt89f16tN5WRTzxU3HplQ0NRaK8PAM3Cd0g3rnGTCeG8kVzVopXeUN04b6WGHQhjk6jjmdbE56eZHnJbOTikMkA42QrD9MlF0FDajZVqB8N3OknRrJUNpASVYhwidbztQrSa5Dye5KUWaKM92oJ1g38OIccnWUGuSNa0h8v1_SSFN0xjBCHz7D7iPS6I1kZriXNRSC4LYCXIp5pzQXwbhzB4tt2S5PVpuz5ZTybuzLmQHvU8wupAvdTWXmhsmiXtz4gIiXr6lMo0StfgLCFq1CA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132473</pqid></control><display><type>article</type><title>A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sandberg, J. ; Hansson-Sandsten, M.</creator><creatorcontrib>Sandberg, J. ; Hansson-Sandsten, M.</creatorcontrib><description>The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neither of these definitions perfectly resembles the usefulness of the continuous ambiguity domain. In this paper, we present some of the most frequently used definitions of the ambiguity domain in discrete time: the Claasen-Mecklenbrauker, the Jeong-Williams, and the Nuttall definitions. For the first time, we prove their equivalence within some necessary conditions and we present theorems that justify their usage.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2009892</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ambiguity ; Ambiguity domain ; Applied sciences ; Claasen-MecklenbrÄuker ; Councils ; Covariance ; covariance function estimation ; Discrete transforms ; discrete-time discrete-frequency ; Estimating ; Exact sciences and technology ; Information, signal and communications theory ; Jeong-Williams ; Kernel ; Matematik ; Mathematics ; Miscellaneous ; Natural Sciences ; Naturvetenskap ; nonstationary random processes ; Nuttall ; Probability Theory and Statistics ; Random processes ; Sannolikhetsteori och statistik ; Shape ; Signal processing ; Statistics ; Stochastic processes ; Stochasticity ; Telecommunications and information theory ; Theorems ; Time frequency analysis ; Visualization</subject><ispartof>IEEE transactions on signal processing, 2009-03, Vol.57 (3), p.868-877</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053</citedby><cites>FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4685632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21471804$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/1301835$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandberg, J.</creatorcontrib><creatorcontrib>Hansson-Sandsten, M.</creatorcontrib><title>A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neither of these definitions perfectly resembles the usefulness of the continuous ambiguity domain. In this paper, we present some of the most frequently used definitions of the ambiguity domain in discrete time: the Claasen-Mecklenbrauker, the Jeong-Williams, and the Nuttall definitions. For the first time, we prove their equivalence within some necessary conditions and we present theorems that justify their usage.</description><subject>Ambiguity</subject><subject>Ambiguity domain</subject><subject>Applied sciences</subject><subject>Claasen-MecklenbrÄuker</subject><subject>Councils</subject><subject>Covariance</subject><subject>covariance function estimation</subject><subject>Discrete transforms</subject><subject>discrete-time discrete-frequency</subject><subject>Estimating</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Jeong-Williams</subject><subject>Kernel</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>nonstationary random processes</subject><subject>Nuttall</subject><subject>Probability Theory and Statistics</subject><subject>Random processes</subject><subject>Sannolikhetsteori och statistik</subject><subject>Shape</subject><subject>Signal processing</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Telecommunications and information theory</subject><subject>Theorems</subject><subject>Time frequency analysis</subject><subject>Visualization</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kdGL1DAQxosoeJ6-C74UQX3qmTRpkj7u7XkqLCjcCr6FaXaiWdqmJi3H_vfOsss--ODDJBPym4-Z-YriNWc3nLP24_bh-03NmDkerWnrJ8UVbyWvmNTqKeWsEVVj9M_nxYuc94xxKVt1VexX5ToOE6SQ41je4vyIOJZ3wXtMOM6UZZdwxnI1dOHXEuZDeRcHCMSgD2OYQxxzSc-HObrfkOfgym0YsLpP-GfB0R3K1Qj9IYf8snjmoc_46nxfFz_uP23XX6rNt89f16tN5WRTzxU3HplQ0NRaK8PAM3Cd0g3rnGTCeG8kVzVopXeUN04b6WGHQhjk6jjmdbE56eZHnJbOTikMkA42QrD9MlF0FDajZVqB8N3OknRrJUNpASVYhwidbztQrSa5Dye5KUWaKM92oJ1g38OIccnWUGuSNa0h8v1_SSFN0xjBCHz7D7iPS6I1kZriXNRSC4LYCXIp5pzQXwbhzB4tt2S5PVpuz5ZTybuzLmQHvU8wupAvdTWXmhsmiXtz4gIiXr6lMo0StfgLCFq1CA</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Sandberg, J.</creator><creator>Hansson-Sandsten, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>20090301</creationdate><title>A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis</title><author>Sandberg, J. ; Hansson-Sandsten, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ambiguity</topic><topic>Ambiguity domain</topic><topic>Applied sciences</topic><topic>Claasen-MecklenbrÄuker</topic><topic>Councils</topic><topic>Covariance</topic><topic>covariance function estimation</topic><topic>Discrete transforms</topic><topic>discrete-time discrete-frequency</topic><topic>Estimating</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Jeong-Williams</topic><topic>Kernel</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>nonstationary random processes</topic><topic>Nuttall</topic><topic>Probability Theory and Statistics</topic><topic>Random processes</topic><topic>Sannolikhetsteori och statistik</topic><topic>Shape</topic><topic>Signal processing</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Telecommunications and information theory</topic><topic>Theorems</topic><topic>Time frequency analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandberg, J.</creatorcontrib><creatorcontrib>Hansson-Sandsten, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandberg, J.</au><au>Hansson-Sandsten, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>57</volume><issue>3</issue><spage>868</spage><epage>877</epage><pages>868-877</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The ambiguity domain plays a central role in estimating the time-varying spectrum and in estimating the covariance function of nonstationary random processes in continuous time. For processes in discrete time, there exist different definitions of the ambiguity domain, but it is well known that neither of these definitions perfectly resembles the usefulness of the continuous ambiguity domain. In this paper, we present some of the most frequently used definitions of the ambiguity domain in discrete time: the Claasen-Mecklenbrauker, the Jeong-Williams, and the Nuttall definitions. For the first time, we prove their equivalence within some necessary conditions and we present theorems that justify their usage.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2009892</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2009-03, Vol.57 (3), p.868-877 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_861132473 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Ambiguity Ambiguity domain Applied sciences Claasen-MecklenbrÄuker Councils Covariance covariance function estimation Discrete transforms discrete-time discrete-frequency Estimating Exact sciences and technology Information, signal and communications theory Jeong-Williams Kernel Matematik Mathematics Miscellaneous Natural Sciences Naturvetenskap nonstationary random processes Nuttall Probability Theory and Statistics Random processes Sannolikhetsteori och statistik Shape Signal processing Statistics Stochastic processes Stochasticity Telecommunications and information theory Theorems Time frequency analysis Visualization |
title | A Comparison Between Different Discrete Ambiguity Domain Definitions in Stochastic Time-Frequency Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20Between%20Different%20Discrete%20Ambiguity%20Domain%20Definitions%20in%20Stochastic%20Time-Frequency%20Analysis&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Sandberg,%20J.&rft.date=2009-03-01&rft.volume=57&rft.issue=3&rft.spage=868&rft.epage=877&rft.pages=868-877&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2009892&rft_dat=%3Cproquest_swepu%3E875040598%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-18fe036a5277680af0acb6750bc4038ff84162a767dff85c784fade338e161053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861132473&rft_id=info:pmid/&rft_ieee_id=4685632&rfr_iscdi=true |