Loading…

Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data

The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameter...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2009-10, Vol.6 (4), p.635-639
Main Authors: Merlin, O., Walker, J.P., Panciera, R., Escorihuela, M.J., Jackson, T.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3
cites cdi_FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3
container_end_page 639
container_issue 4
container_start_page 635
container_title IEEE geoscience and remote sensing letters
container_volume 6
creator Merlin, O.
Walker, J.P.
Panciera, R.
Escorihuela, M.J.
Jackson, T.J.
description The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.
doi_str_mv 10.1109/LGRS.2009.2012727
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_861731724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4781581</ieee_id><sourcerecordid>869594350</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3</originalsourceid><addsrcrecordid>eNp90U1PGzEQBmCrolJD2h9QcbF6aLgs9fh7j1EIUClAlbSiN8sLs4nRJgu2F4l_z26DeuDAxfbhmRmNX0K-AjsBYOWPxflydcIZK_sDuOHmAxmBUrZgysDB8JaqUKX9-4kcpnTPGJfWmhG5maaEKYXdmuYN0tXl9Yqu2tDQyzak3EWkS8wx4JNv6C8f_RYzxkRvQt7Qi7DeFEtMbdPl0O7o1fRsPmGanvrsP5OPtW8Sfnm9x-TP2fz37KJYXJ__nE0XhZdK5gIrpkBIIzQXla0r46sSEZnXwoOGuq4l43daMtRSVKhQG1X3XBgElLwWYzLZ932I7WOHKbttSLfYNH6HbZec1aUqpVCsl9_flRy4sqwfMybH70IwVoPR9h_99obet13c9Qu7wQgwfECwR7exTSli7R5i2Pr47IC5ITw3hOeG8NxreH3N0b4m9L_x30tjQVkQL8jwkv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861731724</pqid></control><display><type>article</type><title>Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Merlin, O. ; Walker, J.P. ; Panciera, R. ; Escorihuela, M.J. ; Jackson, T.J.</creator><creatorcontrib>Merlin, O. ; Walker, J.P. ; Panciera, R. ; Escorihuela, M.J. ; Jackson, T.J.</creatorcontrib><description>The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2009.2012727</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airborne experiment ; Area measurement ; Bias ; calibration ; Crops ; Detection ; Dielectrics ; Information retrieval ; L-band ; L-band radiometry ; Mathematical models ; Mean square errors ; National Airborne Field Experiment (NAFE) ; Pixels ; Radiometry ; Retrieval ; retrieval algorithm ; Root mean square ; SMOS mission ; Soil (material) ; Soil moisture ; Soil Moisture and Ocean Salinity (SMOS) ; Soils ; Spatial resolution</subject><ispartof>IEEE geoscience and remote sensing letters, 2009-10, Vol.6 (4), p.635-639</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3</citedby><cites>FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4781581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Merlin, O.</creatorcontrib><creatorcontrib>Walker, J.P.</creatorcontrib><creatorcontrib>Panciera, R.</creatorcontrib><creatorcontrib>Escorihuela, M.J.</creatorcontrib><creatorcontrib>Jackson, T.J.</creatorcontrib><title>Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.</description><subject>Airborne experiment</subject><subject>Area measurement</subject><subject>Bias</subject><subject>calibration</subject><subject>Crops</subject><subject>Detection</subject><subject>Dielectrics</subject><subject>Information retrieval</subject><subject>L-band</subject><subject>L-band radiometry</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>National Airborne Field Experiment (NAFE)</subject><subject>Pixels</subject><subject>Radiometry</subject><subject>Retrieval</subject><subject>retrieval algorithm</subject><subject>Root mean square</subject><subject>SMOS mission</subject><subject>Soil (material)</subject><subject>Soil moisture</subject><subject>Soil Moisture and Ocean Salinity (SMOS)</subject><subject>Soils</subject><subject>Spatial resolution</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90U1PGzEQBmCrolJD2h9QcbF6aLgs9fh7j1EIUClAlbSiN8sLs4nRJgu2F4l_z26DeuDAxfbhmRmNX0K-AjsBYOWPxflydcIZK_sDuOHmAxmBUrZgysDB8JaqUKX9-4kcpnTPGJfWmhG5maaEKYXdmuYN0tXl9Yqu2tDQyzak3EWkS8wx4JNv6C8f_RYzxkRvQt7Qi7DeFEtMbdPl0O7o1fRsPmGanvrsP5OPtW8Sfnm9x-TP2fz37KJYXJ__nE0XhZdK5gIrpkBIIzQXla0r46sSEZnXwoOGuq4l43daMtRSVKhQG1X3XBgElLwWYzLZ932I7WOHKbttSLfYNH6HbZec1aUqpVCsl9_flRy4sqwfMybH70IwVoPR9h_99obet13c9Qu7wQgwfECwR7exTSli7R5i2Pr47IC5ITw3hOeG8NxreH3N0b4m9L_x30tjQVkQL8jwkv8</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Merlin, O.</creator><creator>Walker, J.P.</creator><creator>Panciera, R.</creator><creator>Escorihuela, M.J.</creator><creator>Jackson, T.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20091001</creationdate><title>Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data</title><author>Merlin, O. ; Walker, J.P. ; Panciera, R. ; Escorihuela, M.J. ; Jackson, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Airborne experiment</topic><topic>Area measurement</topic><topic>Bias</topic><topic>calibration</topic><topic>Crops</topic><topic>Detection</topic><topic>Dielectrics</topic><topic>Information retrieval</topic><topic>L-band</topic><topic>L-band radiometry</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>National Airborne Field Experiment (NAFE)</topic><topic>Pixels</topic><topic>Radiometry</topic><topic>Retrieval</topic><topic>retrieval algorithm</topic><topic>Root mean square</topic><topic>SMOS mission</topic><topic>Soil (material)</topic><topic>Soil moisture</topic><topic>Soil Moisture and Ocean Salinity (SMOS)</topic><topic>Soils</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merlin, O.</creatorcontrib><creatorcontrib>Walker, J.P.</creatorcontrib><creatorcontrib>Panciera, R.</creatorcontrib><creatorcontrib>Escorihuela, M.J.</creatorcontrib><creatorcontrib>Jackson, T.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlin, O.</au><au>Walker, J.P.</au><au>Panciera, R.</au><au>Escorihuela, M.J.</au><au>Jackson, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>6</volume><issue>4</issue><spage>635</spage><epage>639</epage><pages>635-639</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2009.2012727</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2009-10, Vol.6 (4), p.635-639
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_861731724
source IEEE Electronic Library (IEL) Journals
subjects Airborne experiment
Area measurement
Bias
calibration
Crops
Detection
Dielectrics
Information retrieval
L-band
L-band radiometry
Mathematical models
Mean square errors
National Airborne Field Experiment (NAFE)
Pixels
Radiometry
Retrieval
retrieval algorithm
Root mean square
SMOS mission
Soil (material)
Soil moisture
Soil Moisture and Ocean Salinity (SMOS)
Soils
Spatial resolution
title Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20SMOS%20Soil%20Moisture%20Retrieval%20Parameters%20With%20High-Resolution%20NAFE'06%20Data&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Merlin,%20O.&rft.date=2009-10-01&rft.volume=6&rft.issue=4&rft.spage=635&rft.epage=639&rft.pages=635-639&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2009.2012727&rft_dat=%3Cproquest_cross%3E869594350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861731724&rft_id=info:pmid/&rft_ieee_id=4781581&rfr_iscdi=true