Loading…
Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data
The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameter...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2009-10, Vol.6 (4), p.635-639 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3 |
container_end_page | 639 |
container_issue | 4 |
container_start_page | 635 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 6 |
creator | Merlin, O. Walker, J.P. Panciera, R. Escorihuela, M.J. Jackson, T.J. |
description | The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil. |
doi_str_mv | 10.1109/LGRS.2009.2012727 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_861731724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4781581</ieee_id><sourcerecordid>869594350</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3</originalsourceid><addsrcrecordid>eNp90U1PGzEQBmCrolJD2h9QcbF6aLgs9fh7j1EIUClAlbSiN8sLs4nRJgu2F4l_z26DeuDAxfbhmRmNX0K-AjsBYOWPxflydcIZK_sDuOHmAxmBUrZgysDB8JaqUKX9-4kcpnTPGJfWmhG5maaEKYXdmuYN0tXl9Yqu2tDQyzak3EWkS8wx4JNv6C8f_RYzxkRvQt7Qi7DeFEtMbdPl0O7o1fRsPmGanvrsP5OPtW8Sfnm9x-TP2fz37KJYXJ__nE0XhZdK5gIrpkBIIzQXla0r46sSEZnXwoOGuq4l43daMtRSVKhQG1X3XBgElLwWYzLZ932I7WOHKbttSLfYNH6HbZec1aUqpVCsl9_flRy4sqwfMybH70IwVoPR9h_99obet13c9Qu7wQgwfECwR7exTSli7R5i2Pr47IC5ITw3hOeG8NxreH3N0b4m9L_x30tjQVkQL8jwkv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861731724</pqid></control><display><type>article</type><title>Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Merlin, O. ; Walker, J.P. ; Panciera, R. ; Escorihuela, M.J. ; Jackson, T.J.</creator><creatorcontrib>Merlin, O. ; Walker, J.P. ; Panciera, R. ; Escorihuela, M.J. ; Jackson, T.J.</creatorcontrib><description>The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2009.2012727</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airborne experiment ; Area measurement ; Bias ; calibration ; Crops ; Detection ; Dielectrics ; Information retrieval ; L-band ; L-band radiometry ; Mathematical models ; Mean square errors ; National Airborne Field Experiment (NAFE) ; Pixels ; Radiometry ; Retrieval ; retrieval algorithm ; Root mean square ; SMOS mission ; Soil (material) ; Soil moisture ; Soil Moisture and Ocean Salinity (SMOS) ; Soils ; Spatial resolution</subject><ispartof>IEEE geoscience and remote sensing letters, 2009-10, Vol.6 (4), p.635-639</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3</citedby><cites>FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4781581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Merlin, O.</creatorcontrib><creatorcontrib>Walker, J.P.</creatorcontrib><creatorcontrib>Panciera, R.</creatorcontrib><creatorcontrib>Escorihuela, M.J.</creatorcontrib><creatorcontrib>Jackson, T.J.</creatorcontrib><title>Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.</description><subject>Airborne experiment</subject><subject>Area measurement</subject><subject>Bias</subject><subject>calibration</subject><subject>Crops</subject><subject>Detection</subject><subject>Dielectrics</subject><subject>Information retrieval</subject><subject>L-band</subject><subject>L-band radiometry</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>National Airborne Field Experiment (NAFE)</subject><subject>Pixels</subject><subject>Radiometry</subject><subject>Retrieval</subject><subject>retrieval algorithm</subject><subject>Root mean square</subject><subject>SMOS mission</subject><subject>Soil (material)</subject><subject>Soil moisture</subject><subject>Soil Moisture and Ocean Salinity (SMOS)</subject><subject>Soils</subject><subject>Spatial resolution</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90U1PGzEQBmCrolJD2h9QcbF6aLgs9fh7j1EIUClAlbSiN8sLs4nRJgu2F4l_z26DeuDAxfbhmRmNX0K-AjsBYOWPxflydcIZK_sDuOHmAxmBUrZgysDB8JaqUKX9-4kcpnTPGJfWmhG5maaEKYXdmuYN0tXl9Yqu2tDQyzak3EWkS8wx4JNv6C8f_RYzxkRvQt7Qi7DeFEtMbdPl0O7o1fRsPmGanvrsP5OPtW8Sfnm9x-TP2fz37KJYXJ__nE0XhZdK5gIrpkBIIzQXla0r46sSEZnXwoOGuq4l43daMtRSVKhQG1X3XBgElLwWYzLZ932I7WOHKbttSLfYNH6HbZec1aUqpVCsl9_flRy4sqwfMybH70IwVoPR9h_99obet13c9Qu7wQgwfECwR7exTSli7R5i2Pr47IC5ITw3hOeG8NxreH3N0b4m9L_x30tjQVkQL8jwkv8</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Merlin, O.</creator><creator>Walker, J.P.</creator><creator>Panciera, R.</creator><creator>Escorihuela, M.J.</creator><creator>Jackson, T.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20091001</creationdate><title>Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data</title><author>Merlin, O. ; Walker, J.P. ; Panciera, R. ; Escorihuela, M.J. ; Jackson, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Airborne experiment</topic><topic>Area measurement</topic><topic>Bias</topic><topic>calibration</topic><topic>Crops</topic><topic>Detection</topic><topic>Dielectrics</topic><topic>Information retrieval</topic><topic>L-band</topic><topic>L-band radiometry</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>National Airborne Field Experiment (NAFE)</topic><topic>Pixels</topic><topic>Radiometry</topic><topic>Retrieval</topic><topic>retrieval algorithm</topic><topic>Root mean square</topic><topic>SMOS mission</topic><topic>Soil (material)</topic><topic>Soil moisture</topic><topic>Soil Moisture and Ocean Salinity (SMOS)</topic><topic>Soils</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merlin, O.</creatorcontrib><creatorcontrib>Walker, J.P.</creatorcontrib><creatorcontrib>Panciera, R.</creatorcontrib><creatorcontrib>Escorihuela, M.J.</creatorcontrib><creatorcontrib>Jackson, T.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlin, O.</au><au>Walker, J.P.</au><au>Panciera, R.</au><au>Escorihuela, M.J.</au><au>Jackson, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>6</volume><issue>4</issue><spage>635</spage><epage>639</epage><pages>635-639</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2009.2012727</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2009-10, Vol.6 (4), p.635-639 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_861731724 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Airborne experiment Area measurement Bias calibration Crops Detection Dielectrics Information retrieval L-band L-band radiometry Mathematical models Mean square errors National Airborne Field Experiment (NAFE) Pixels Radiometry Retrieval retrieval algorithm Root mean square SMOS mission Soil (material) Soil moisture Soil Moisture and Ocean Salinity (SMOS) Soils Spatial resolution |
title | Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20SMOS%20Soil%20Moisture%20Retrieval%20Parameters%20With%20High-Resolution%20NAFE'06%20Data&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Merlin,%20O.&rft.date=2009-10-01&rft.volume=6&rft.issue=4&rft.spage=635&rft.epage=639&rft.pages=635-639&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2009.2012727&rft_dat=%3Cproquest_cross%3E869594350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a454t-eb0513473623b8fb7ab9eee0a63a161fff402d640e643be5e675f47337e1e42f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861731724&rft_id=info:pmid/&rft_ieee_id=4781581&rfr_iscdi=true |