Loading…
Monte carlo equalization for nonlinear dispersive satellite channels
Satellite channels are generally nonlinear and dispersive in nature, due to amplifiers being driven close to saturation. These effects can cause significant degradations when they are not taken into account at either the receiver (equalization) or at the transmitter (pre-distortion). State-of-the-ar...
Saved in:
Published in: | IEEE journal on selected areas in communications 2008-02, Vol.26 (2), p.245-255 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Satellite channels are generally nonlinear and dispersive in nature, due to amplifiers being driven close to saturation. These effects can cause significant degradations when they are not taken into account at either the receiver (equalization) or at the transmitter (pre-distortion). State-of-the-art equalizers rely on the forward-backward algorithm and yield excellent performance. However, they have unreasonable complexity and storage requirements, especially for highly dispersive channels and/or large constellations. In this paper, we derive an equalization strategy for nonlinear channels based on Monte Carlo methods. We present a detailed performance, complexity and storage analysis. A significant performance gain compared to the linear equalizer is reported, and the proposed technique results in a significant reduction in both complexity and storage, compared to the forward-backward equalizer. |
---|---|
ISSN: | 0733-8716 1558-0008 |
DOI: | 10.1109/JSAC.2008.080202 |