Loading…
Ultra-Wideband Waveform Generator Based on Optical Pulse-Shaping and FBG Tuning
We propose and demonstrate experimentally a prototype for ultra-wideband (UWB) waveform generator based on optical pulse shaping. The time-domain pulse shape is written in the frequency domain, and a single-mode fiber performs frequency-to-time conversion. A U.S. Federal Communications Commission (F...
Saved in:
Published in: | IEEE photonics technology letters 2008-01, Vol.20 (2), p.135-137 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose and demonstrate experimentally a prototype for ultra-wideband (UWB) waveform generator based on optical pulse shaping. The time-domain pulse shape is written in the frequency domain, and a single-mode fiber performs frequency-to-time conversion. A U.S. Federal Communications Commission (FCC)-compliant power efficient pulse shape is inscribed in the frequency domain by a fiber Bragg grating (FBG) with an excellent match between optimized and measured pulses. Two other popular UWB pulse shapes (Gaussian monocycle and doublet pulses) are achieved by proper tuning of two FBG-based variable optical filters. A balanced photodetector removes an unwanted rectangular pulse superimposed on the desired waveform, assuring compliance at low frequency. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2007.912523 |