Loading…

Acceptability of Four Transformer Top-Oil Thermal Models-Part I: Defining Metrics

Eventually, the prediction of transformer thermal performance for dynamic loading will be made using models distilled from measured data, rather than models derived from transformer heat-run tests. Which model(s) will be used for this purpose remains unclear. In this paper, we introduce metrics for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2008-04, Vol.23 (2), p.860-865
Main Authors: Jauregui-Rivera, L., Tylavsky, D.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-266bb8f2e5f25e92da244a847d227db2e4979ee022705395b7408cd681bf978d3
cites cdi_FETCH-LOGICAL-c385t-266bb8f2e5f25e92da244a847d227db2e4979ee022705395b7408cd681bf978d3
container_end_page 865
container_issue 2
container_start_page 860
container_title IEEE transactions on power delivery
container_volume 23
creator Jauregui-Rivera, L.
Tylavsky, D.J.
description Eventually, the prediction of transformer thermal performance for dynamic loading will be made using models distilled from measured data, rather than models derived from transformer heat-run tests. Which model(s) will be used for this purpose remains unclear. In this paper, we introduce metrics for measuring the acceptability of transformer thermal models. For a model to be acceptable, it must have the qualities of adequacy, accuracy, and consistency. We assess model adequacy using the metrics: prediction R 2 and plot of residuals against fitted values. To assess model consistency, we use the variance inflation factor (which measures multicollinearity), condition number, eigenstructure, parameter sensitivity, and the standard deviation of model parameters and predicted maximum steady-state load (SSL max ). To assess model accuracy, we use the comparison of model parameters with nominal values and error duration curves. Other metrics of interest are also introduced. In a companion paper, these metrics are applied to the four models defined in this paper and a relative ranking of the acceptability of these models is presented.
doi_str_mv 10.1109/TPWRD.2007.905555
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_863001078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4460580</ieee_id><sourcerecordid>2327085631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-266bb8f2e5f25e92da244a847d227db2e4979ee022705395b7408cd681bf978d3</originalsourceid><addsrcrecordid>eNp9kU1P4zAQhi3EShR2fwDiEiEBp3THH4ltbgiWDwkEi4o4Wo4zBqM0KXZ66L9f0yIOHHYuHsvPvJ6Zl5B9ClNKQf-ePTw_XkwZgJxqqHJskQnVXJaCgdomE1CqKpWWcofspvQGAAI0TMjfM-dwMdomdGFcFYMvLodlLGbR9skPcY45HxblfeiK2SvGue2Ku6HFLpUPNo7FzWlxgT70oX8p7nCMwaWf5Ie3XcJfn-ceebr8Mzu_Lm_vr27Oz25Lx1U1lqyum0Z5hpVnFWrWWiaEVUK2jMm2YSi01IiQb1BxXTVSgHJtrWjjtVQt3yMnG91FHN6XmEYzD8lh19keh2UyGnhNudZ1Jo__S3IhaA0MMnj4DXzLy-jzFEbVHICCVBmiG8jFIaWI3iximNu4MhTMhxdm7YX58MJsvMg1R5_CNjnb-bxdF9JXYf5aCb1u4GDDBUT8ehaihkoB_wd2zpAt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863001078</pqid></control><display><type>article</type><title>Acceptability of Four Transformer Top-Oil Thermal Models-Part I: Defining Metrics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jauregui-Rivera, L. ; Tylavsky, D.J.</creator><creatorcontrib>Jauregui-Rivera, L. ; Tylavsky, D.J.</creatorcontrib><description>Eventually, the prediction of transformer thermal performance for dynamic loading will be made using models distilled from measured data, rather than models derived from transformer heat-run tests. Which model(s) will be used for this purpose remains unclear. In this paper, we introduce metrics for measuring the acceptability of transformer thermal models. For a model to be acceptable, it must have the qualities of adequacy, accuracy, and consistency. We assess model adequacy using the metrics: prediction R 2 and plot of residuals against fitted values. To assess model consistency, we use the variance inflation factor (which measures multicollinearity), condition number, eigenstructure, parameter sensitivity, and the standard deviation of model parameters and predicted maximum steady-state load (SSL max ). To assess model accuracy, we use the comparison of model parameters with nominal values and error duration curves. Other metrics of interest are also introduced. In a companion paper, these metrics are applied to the four models defined in this paper and a relative ranking of the acceptability of these models is presented.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2007.905555</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>ANSI C5791 ; Applied sciences ; Electrical engineering. Electrical power engineering ; Exact sciences and technology ; Load modeling ; Measurement standards ; Performance evaluation ; Predictive models ; Standard deviation ; Statistical distributions ; Steady-state ; Studies ; Temperature ; Testing ; Thermal loading ; Thermal resistance ; top-oil temperature ; transformer ; transformer thermal modeling ; Transformers and inductors</subject><ispartof>IEEE transactions on power delivery, 2008-04, Vol.23 (2), p.860-865</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-266bb8f2e5f25e92da244a847d227db2e4979ee022705395b7408cd681bf978d3</citedby><cites>FETCH-LOGICAL-c385t-266bb8f2e5f25e92da244a847d227db2e4979ee022705395b7408cd681bf978d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4460580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20384920$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jauregui-Rivera, L.</creatorcontrib><creatorcontrib>Tylavsky, D.J.</creatorcontrib><title>Acceptability of Four Transformer Top-Oil Thermal Models-Part I: Defining Metrics</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Eventually, the prediction of transformer thermal performance for dynamic loading will be made using models distilled from measured data, rather than models derived from transformer heat-run tests. Which model(s) will be used for this purpose remains unclear. In this paper, we introduce metrics for measuring the acceptability of transformer thermal models. For a model to be acceptable, it must have the qualities of adequacy, accuracy, and consistency. We assess model adequacy using the metrics: prediction R 2 and plot of residuals against fitted values. To assess model consistency, we use the variance inflation factor (which measures multicollinearity), condition number, eigenstructure, parameter sensitivity, and the standard deviation of model parameters and predicted maximum steady-state load (SSL max ). To assess model accuracy, we use the comparison of model parameters with nominal values and error duration curves. Other metrics of interest are also introduced. In a companion paper, these metrics are applied to the four models defined in this paper and a relative ranking of the acceptability of these models is presented.</description><subject>ANSI C5791</subject><subject>Applied sciences</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>Load modeling</subject><subject>Measurement standards</subject><subject>Performance evaluation</subject><subject>Predictive models</subject><subject>Standard deviation</subject><subject>Statistical distributions</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Temperature</subject><subject>Testing</subject><subject>Thermal loading</subject><subject>Thermal resistance</subject><subject>top-oil temperature</subject><subject>transformer</subject><subject>transformer thermal modeling</subject><subject>Transformers and inductors</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P4zAQhi3EShR2fwDiEiEBp3THH4ltbgiWDwkEi4o4Wo4zBqM0KXZ66L9f0yIOHHYuHsvPvJ6Zl5B9ClNKQf-ePTw_XkwZgJxqqHJskQnVXJaCgdomE1CqKpWWcofspvQGAAI0TMjfM-dwMdomdGFcFYMvLodlLGbR9skPcY45HxblfeiK2SvGue2Ku6HFLpUPNo7FzWlxgT70oX8p7nCMwaWf5Ie3XcJfn-ceebr8Mzu_Lm_vr27Oz25Lx1U1lqyum0Z5hpVnFWrWWiaEVUK2jMm2YSi01IiQb1BxXTVSgHJtrWjjtVQt3yMnG91FHN6XmEYzD8lh19keh2UyGnhNudZ1Jo__S3IhaA0MMnj4DXzLy-jzFEbVHICCVBmiG8jFIaWI3iximNu4MhTMhxdm7YX58MJsvMg1R5_CNjnb-bxdF9JXYf5aCb1u4GDDBUT8ehaihkoB_wd2zpAt</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Jauregui-Rivera, L.</creator><creator>Tylavsky, D.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20080401</creationdate><title>Acceptability of Four Transformer Top-Oil Thermal Models-Part I: Defining Metrics</title><author>Jauregui-Rivera, L. ; Tylavsky, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-266bb8f2e5f25e92da244a847d227db2e4979ee022705395b7408cd681bf978d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ANSI C5791</topic><topic>Applied sciences</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>Load modeling</topic><topic>Measurement standards</topic><topic>Performance evaluation</topic><topic>Predictive models</topic><topic>Standard deviation</topic><topic>Statistical distributions</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Temperature</topic><topic>Testing</topic><topic>Thermal loading</topic><topic>Thermal resistance</topic><topic>top-oil temperature</topic><topic>transformer</topic><topic>transformer thermal modeling</topic><topic>Transformers and inductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jauregui-Rivera, L.</creatorcontrib><creatorcontrib>Tylavsky, D.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jauregui-Rivera, L.</au><au>Tylavsky, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceptability of Four Transformer Top-Oil Thermal Models-Part I: Defining Metrics</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>23</volume><issue>2</issue><spage>860</spage><epage>865</epage><pages>860-865</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Eventually, the prediction of transformer thermal performance for dynamic loading will be made using models distilled from measured data, rather than models derived from transformer heat-run tests. Which model(s) will be used for this purpose remains unclear. In this paper, we introduce metrics for measuring the acceptability of transformer thermal models. For a model to be acceptable, it must have the qualities of adequacy, accuracy, and consistency. We assess model adequacy using the metrics: prediction R 2 and plot of residuals against fitted values. To assess model consistency, we use the variance inflation factor (which measures multicollinearity), condition number, eigenstructure, parameter sensitivity, and the standard deviation of model parameters and predicted maximum steady-state load (SSL max ). To assess model accuracy, we use the comparison of model parameters with nominal values and error duration curves. Other metrics of interest are also introduced. In a companion paper, these metrics are applied to the four models defined in this paper and a relative ranking of the acceptability of these models is presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2007.905555</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2008-04, Vol.23 (2), p.860-865
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_journals_863001078
source IEEE Electronic Library (IEL) Journals
subjects ANSI C5791
Applied sciences
Electrical engineering. Electrical power engineering
Exact sciences and technology
Load modeling
Measurement standards
Performance evaluation
Predictive models
Standard deviation
Statistical distributions
Steady-state
Studies
Temperature
Testing
Thermal loading
Thermal resistance
top-oil temperature
transformer
transformer thermal modeling
Transformers and inductors
title Acceptability of Four Transformer Top-Oil Thermal Models-Part I: Defining Metrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceptability%20of%20Four%20Transformer%20Top-Oil%20Thermal%20Models-Part%20I:%20Defining%20Metrics&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Jauregui-Rivera,%20L.&rft.date=2008-04-01&rft.volume=23&rft.issue=2&rft.spage=860&rft.epage=865&rft.pages=860-865&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2007.905555&rft_dat=%3Cproquest_ieee_%3E2327085631%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-266bb8f2e5f25e92da244a847d227db2e4979ee022705395b7408cd681bf978d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863001078&rft_id=info:pmid/&rft_ieee_id=4460580&rfr_iscdi=true