Loading…

Control Algorithm of Fuel Cell and Batteries for Distributed Generation System

This paper intends to propose a novel control algorithm for utilizing a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and batteries as a complementary source, for hybrid power sources for distributed generation system, particularly for future electric vehicle applications. Th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on energy conversion 2008-03, Vol.23 (1), p.148-155
Main Authors: Thounthong, P., Rael, S., Davat, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper intends to propose a novel control algorithm for utilizing a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and batteries as a complementary source, for hybrid power sources for distributed generation system, particularly for future electric vehicle applications. The control, which takes into account the slow dynamics of a fuel cell (FC) in order to avoid fuel (hydrogen and air) starvation problems, is obviously simpler than state machines used for hybrid source control. The control strategy lies in using an FC for supplying energy to battery and load at the dc bus. The structure is an FC current, battery current, and battery state-of-charge (SOC) cascade control. To validate the proposed principle, a hardware system is realized by analogical circuits for the FC current loop and numerical calculation (dSPACE) for the battery current and SOC loops. Experimental results with small-scale devices (a 500 W PEM FC and 33 Ah, 48 V lead-acid battery bank) illustrate the excellent control scheme during motor drive cycles.
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2006.888028