Loading…

One or Two Frequencies? The Empirical Mode Decomposition Answers

This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whet...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2008-01, Vol.56 (1), p.85-95
Main Authors: Rilling, G., Flandrin, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03
cites cdi_FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03
container_end_page 95
container_issue 1
container_start_page 85
container_title IEEE transactions on signal processing
container_volume 56
creator Rilling, G.
Flandrin, P.
description This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of the EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviors and theoretical claims are supported by numerical experiments. The analysis is then extended to a nonlinear model where the same two regimes are shown to exist and the resolution properties of the EMD are assessed.
doi_str_mv 10.1109/TSP.2007.906771
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_863203044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4359551</ieee_id><sourcerecordid>2328647681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFbPHrwsgnraNrP52py01FaFSgVX8BbSdBa3tJuatBT_vSktCh48zcA87zDzJMk5kA4AUd3y9aWTEyI7iggp4SBpgWKQESbFYewJpxkv5PtxchLCjBBgTIlWcjduMHU-LTcuHXr8XGNjawy3afmB6WCxrH1tzTx9dlNM79G6xdKFelW7Ju01YYM-nCZHlZkHPNvXdvI2HJT9x2w0fnjq90aZ5YSuMplbCwLVRHFpKBd2IqmFAmRFqolUFCdgmGAK6NRKNmXcAJckt9xKinZKaDu52e1dehevDCu9qIPF-dw06NZBF4WisgAqInn9L0lZoUSRswhe_gFnbu2b-IUuBM0JJWwLdXeQ9S4Ej5Ve-nph_JcGorfidRSvt-L1TnxMXO3XmhDdVd5EpeE3phSnHFTkLnZcjYg_Y0a54hzoN_VriYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863203044</pqid></control><display><type>article</type><title>One or Two Frequencies? The Empirical Mode Decomposition Answers</title><source>IEEE Xplore (Online service)</source><creator>Rilling, G. ; Flandrin, P.</creator><creatorcontrib>Rilling, G. ; Flandrin, P.</creatorcontrib><description>This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of the EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviors and theoretical claims are supported by numerical experiments. The analysis is then extended to a nonlinear model where the same two regimes are shown to exist and the resolution properties of the EMD are assessed.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.906771</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplitude estimation ; Amplitude modulation ; Amplitudes ; Applied sciences ; Decomposition ; Ear ; Empirical analysis ; Empirical mode decomposition (EMD) ; Exact sciences and technology ; Frequency estimation ; Humans ; Information, signal and communications theory ; Mathematical models ; Nonlinearity ; Physics ; resolution ; Signal analysis ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal resolution ; Signal, noise ; Spectral analysis ; Telecommunications and information theory ; time frequency ; Time frequency analysis ; Unity ; Waveforms</subject><ispartof>IEEE transactions on signal processing, 2008-01, Vol.56 (1), p.85-95</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03</citedby><cites>FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4359551$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19953519$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rilling, G.</creatorcontrib><creatorcontrib>Flandrin, P.</creatorcontrib><title>One or Two Frequencies? The Empirical Mode Decomposition Answers</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of the EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviors and theoretical claims are supported by numerical experiments. The analysis is then extended to a nonlinear model where the same two regimes are shown to exist and the resolution properties of the EMD are assessed.</description><subject>Amplitude estimation</subject><subject>Amplitude modulation</subject><subject>Amplitudes</subject><subject>Applied sciences</subject><subject>Decomposition</subject><subject>Ear</subject><subject>Empirical analysis</subject><subject>Empirical mode decomposition (EMD)</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>Humans</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>resolution</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal resolution</subject><subject>Signal, noise</subject><subject>Spectral analysis</subject><subject>Telecommunications and information theory</subject><subject>time frequency</subject><subject>Time frequency analysis</subject><subject>Unity</subject><subject>Waveforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFbPHrwsgnraNrP52py01FaFSgVX8BbSdBa3tJuatBT_vSktCh48zcA87zDzJMk5kA4AUd3y9aWTEyI7iggp4SBpgWKQESbFYewJpxkv5PtxchLCjBBgTIlWcjduMHU-LTcuHXr8XGNjawy3afmB6WCxrH1tzTx9dlNM79G6xdKFelW7Ju01YYM-nCZHlZkHPNvXdvI2HJT9x2w0fnjq90aZ5YSuMplbCwLVRHFpKBd2IqmFAmRFqolUFCdgmGAK6NRKNmXcAJckt9xKinZKaDu52e1dehevDCu9qIPF-dw06NZBF4WisgAqInn9L0lZoUSRswhe_gFnbu2b-IUuBM0JJWwLdXeQ9S4Ej5Ve-nph_JcGorfidRSvt-L1TnxMXO3XmhDdVd5EpeE3phSnHFTkLnZcjYg_Y0a54hzoN_VriYM</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Rilling, G.</creator><creator>Flandrin, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200801</creationdate><title>One or Two Frequencies? The Empirical Mode Decomposition Answers</title><author>Rilling, G. ; Flandrin, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amplitude estimation</topic><topic>Amplitude modulation</topic><topic>Amplitudes</topic><topic>Applied sciences</topic><topic>Decomposition</topic><topic>Ear</topic><topic>Empirical analysis</topic><topic>Empirical mode decomposition (EMD)</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>Humans</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>resolution</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal resolution</topic><topic>Signal, noise</topic><topic>Spectral analysis</topic><topic>Telecommunications and information theory</topic><topic>time frequency</topic><topic>Time frequency analysis</topic><topic>Unity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rilling, G.</creatorcontrib><creatorcontrib>Flandrin, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rilling, G.</au><au>Flandrin, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One or Two Frequencies? The Empirical Mode Decomposition Answers</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2008-01</date><risdate>2008</risdate><volume>56</volume><issue>1</issue><spage>85</spage><epage>95</epage><pages>85-95</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of the EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviors and theoretical claims are supported by numerical experiments. The analysis is then extended to a nonlinear model where the same two regimes are shown to exist and the resolution properties of the EMD are assessed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.906771</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2008-01, Vol.56 (1), p.85-95
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_863203044
source IEEE Xplore (Online service)
subjects Amplitude estimation
Amplitude modulation
Amplitudes
Applied sciences
Decomposition
Ear
Empirical analysis
Empirical mode decomposition (EMD)
Exact sciences and technology
Frequency estimation
Humans
Information, signal and communications theory
Mathematical models
Nonlinearity
Physics
resolution
Signal analysis
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal resolution
Signal, noise
Spectral analysis
Telecommunications and information theory
time frequency
Time frequency analysis
Unity
Waveforms
title One or Two Frequencies? The Empirical Mode Decomposition Answers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20or%20Two%20Frequencies?%20The%20Empirical%20Mode%20Decomposition%20Answers&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Rilling,%20G.&rft.date=2008-01&rft.volume=56&rft.issue=1&rft.spage=85&rft.epage=95&rft.pages=85-95&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.906771&rft_dat=%3Cproquest_cross%3E2328647681%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863203044&rft_id=info:pmid/&rft_ieee_id=4359551&rfr_iscdi=true