Loading…
The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel
There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2 μ m were very hard to find when total strain amplitude (Δ ε /2) was controlled to within 0.1 pct. When Δ ε /2 is incr...
Saved in:
Published in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-08, Vol.41 (8), p.1995-2001 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23 |
container_end_page | 2001 |
container_issue | 8 |
container_start_page | 1995 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 41 |
creator | Shih, Chia-Chang Ho, New-Jin Huang, Hsing-Lu |
description | There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2
μ
m were very hard to find when total strain amplitude (Δ
ε
/2) was controlled to within 0.1 pct. When Δ
ε
/2 is increased to 0.125 to 0.3 pct, secondary cyclic hardening takes place prior to fatigue failure. Δ
ε
/2 = 0.6 pct, following an initial rapid-hardening stage. Dislocation cells smaller than 2
μ
m tend to develop near grain boundaries and triple junction of the grains while cycling just above Δ
ε
/2 = 0.125 pct. Such dislocation development results in secondary hardening. However, no failure occurs if cycling just below Δ
ε
/2 = 0.1 pct; hence, the fatigue limit for IF steel should be very close to Δ
ε
/2 = 0.1 pct. |
doi_str_mv | 10.1007/s11661-010-0186-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_863645399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331077961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNsieIxONtmkOWq1Wih4sJ5DNpu0KetuTbJC_70pLXryMMzAfO_N8BC6JnBHAMR9JIRzgoFArgnH_ASNSMUoJpLBaZ5BUFzxkp6jixg3AEAk5SO0XK5t8Z6GZlf0rpjp5FeDLR7tWn_7PsRCd03x5GPbm7zqu4yGwaQh2Fj4rph3yYaYfPK6xbNg91bWtpfozOk22qtjH6OP2fNy-ooXby_z6cMCG0ZIwsZIEGxSOeuAaikoJVAxJ2rRaFY7ShtTC2JLsI2mnDWMVkLbsmpqDpVpSjpGNwffbei_BhuT2vRD6PJJNeFZUVEpM0QOkAl9jME6tQ3-U4edIqD22alDdipnp_bZKZ41t0djHY1uXdCd8fFXWFIAKSRkrjxwMa-6lQ1_D_xv_gM5AH49</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863645399</pqid></control><display><type>article</type><title>The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel</title><source>Springer Link</source><creator>Shih, Chia-Chang ; Ho, New-Jin ; Huang, Hsing-Lu</creator><creatorcontrib>Shih, Chia-Chang ; Ho, New-Jin ; Huang, Hsing-Lu</creatorcontrib><description>There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2
μ
m were very hard to find when total strain amplitude (Δ
ε
/2) was controlled to within 0.1 pct. When Δ
ε
/2 is increased to 0.125 to 0.3 pct, secondary cyclic hardening takes place prior to fatigue failure. Δ
ε
/2 = 0.6 pct, following an initial rapid-hardening stage. Dislocation cells smaller than 2
μ
m tend to develop near grain boundaries and triple junction of the grains while cycling just above Δ
ε
/2 = 0.125 pct. Such dislocation development results in secondary hardening. However, no failure occurs if cycling just below Δ
ε
/2 = 0.1 pct; hence, the fatigue limit for IF steel should be very close to Δ
ε
/2 = 0.1 pct.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-010-0186-6</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Behavior ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crack initiation ; Exact sciences and technology ; Fatigue ; Materials Science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metal fatigue ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-08, Vol.41 (8), p.1995-2001</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science & Business Media Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23</citedby><cites>FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23009790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shih, Chia-Chang</creatorcontrib><creatorcontrib>Ho, New-Jin</creatorcontrib><creatorcontrib>Huang, Hsing-Lu</creatorcontrib><title>The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2
μ
m were very hard to find when total strain amplitude (Δ
ε
/2) was controlled to within 0.1 pct. When Δ
ε
/2 is increased to 0.125 to 0.3 pct, secondary cyclic hardening takes place prior to fatigue failure. Δ
ε
/2 = 0.6 pct, following an initial rapid-hardening stage. Dislocation cells smaller than 2
μ
m tend to develop near grain boundaries and triple junction of the grains while cycling just above Δ
ε
/2 = 0.125 pct. Such dislocation development results in secondary hardening. However, no failure occurs if cycling just below Δ
ε
/2 = 0.1 pct; hence, the fatigue limit for IF steel should be very close to Δ
ε
/2 = 0.1 pct.</description><subject>Applied sciences</subject><subject>Behavior</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crack initiation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Materials Science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metal fatigue</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNsieIxONtmkOWq1Wih4sJ5DNpu0KetuTbJC_70pLXryMMzAfO_N8BC6JnBHAMR9JIRzgoFArgnH_ASNSMUoJpLBaZ5BUFzxkp6jixg3AEAk5SO0XK5t8Z6GZlf0rpjp5FeDLR7tWn_7PsRCd03x5GPbm7zqu4yGwaQh2Fj4rph3yYaYfPK6xbNg91bWtpfozOk22qtjH6OP2fNy-ooXby_z6cMCG0ZIwsZIEGxSOeuAaikoJVAxJ2rRaFY7ShtTC2JLsI2mnDWMVkLbsmpqDpVpSjpGNwffbei_BhuT2vRD6PJJNeFZUVEpM0QOkAl9jME6tQ3-U4edIqD22alDdipnp_bZKZ41t0djHY1uXdCd8fFXWFIAKSRkrjxwMa-6lQ1_D_xv_gM5AH49</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Shih, Chia-Chang</creator><creator>Ho, New-Jin</creator><creator>Huang, Hsing-Lu</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100801</creationdate><title>The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel</title><author>Shih, Chia-Chang ; Ho, New-Jin ; Huang, Hsing-Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Behavior</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crack initiation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Materials Science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metal fatigue</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shih, Chia-Chang</creatorcontrib><creatorcontrib>Ho, New-Jin</creatorcontrib><creatorcontrib>Huang, Hsing-Lu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shih, Chia-Chang</au><au>Ho, New-Jin</au><au>Huang, Hsing-Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>41</volume><issue>8</issue><spage>1995</spage><epage>2001</epage><pages>1995-2001</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2
μ
m were very hard to find when total strain amplitude (Δ
ε
/2) was controlled to within 0.1 pct. When Δ
ε
/2 is increased to 0.125 to 0.3 pct, secondary cyclic hardening takes place prior to fatigue failure. Δ
ε
/2 = 0.6 pct, following an initial rapid-hardening stage. Dislocation cells smaller than 2
μ
m tend to develop near grain boundaries and triple junction of the grains while cycling just above Δ
ε
/2 = 0.125 pct. Such dislocation development results in secondary hardening. However, no failure occurs if cycling just below Δ
ε
/2 = 0.1 pct; hence, the fatigue limit for IF steel should be very close to Δ
ε
/2 = 0.1 pct.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-010-0186-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-08, Vol.41 (8), p.1995-2001 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_863645399 |
source | Springer Link |
subjects | Applied sciences Behavior Characterization and Evaluation of Materials Chemistry and Materials Science Crack initiation Exact sciences and technology Fatigue Materials Science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metal fatigue Metallic Materials Metals. Metallurgy Nanotechnology Structural Materials Surfaces and Interfaces Thin Films |
title | The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Study%20of%20Fatigue%20Behaviors%20and%20Dislocation%20Structures%20in%20Interstitial-Free%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Shih,%20Chia-Chang&rft.date=2010-08-01&rft.volume=41&rft.issue=8&rft.spage=1995&rft.epage=2001&rft.pages=1995-2001&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-010-0186-6&rft_dat=%3Cproquest_cross%3E2331077961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863645399&rft_id=info:pmid/&rfr_iscdi=true |