Loading…

The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel

There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2  μ m were very hard to find when total strain amplitude (Δ ε /2) was controlled to within 0.1 pct. When Δ ε /2 is incr...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-08, Vol.41 (8), p.1995-2001
Main Authors: Shih, Chia-Chang, Ho, New-Jin, Huang, Hsing-Lu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23
cites cdi_FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23
container_end_page 2001
container_issue 8
container_start_page 1995
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 41
creator Shih, Chia-Chang
Ho, New-Jin
Huang, Hsing-Lu
description There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2  μ m were very hard to find when total strain amplitude (Δ ε /2) was controlled to within 0.1 pct. When Δ ε /2 is increased to 0.125 to 0.3 pct, secondary cyclic hardening takes place prior to fatigue failure. Δ ε /2 = 0.6 pct, following an initial rapid-hardening stage. Dislocation cells smaller than 2  μ m tend to develop near grain boundaries and triple junction of the grains while cycling just above Δ ε /2 = 0.125 pct. Such dislocation development results in secondary hardening. However, no failure occurs if cycling just below Δ ε /2 = 0.1 pct; hence, the fatigue limit for IF steel should be very close to Δ ε /2 = 0.1 pct.
doi_str_mv 10.1007/s11661-010-0186-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_863645399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331077961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNsieIxONtmkOWq1Wih4sJ5DNpu0KetuTbJC_70pLXryMMzAfO_N8BC6JnBHAMR9JIRzgoFArgnH_ASNSMUoJpLBaZ5BUFzxkp6jixg3AEAk5SO0XK5t8Z6GZlf0rpjp5FeDLR7tWn_7PsRCd03x5GPbm7zqu4yGwaQh2Fj4rph3yYaYfPK6xbNg91bWtpfozOk22qtjH6OP2fNy-ooXby_z6cMCG0ZIwsZIEGxSOeuAaikoJVAxJ2rRaFY7ShtTC2JLsI2mnDWMVkLbsmpqDpVpSjpGNwffbei_BhuT2vRD6PJJNeFZUVEpM0QOkAl9jME6tQ3-U4edIqD22alDdipnp_bZKZ41t0djHY1uXdCd8fFXWFIAKSRkrjxwMa-6lQ1_D_xv_gM5AH49</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863645399</pqid></control><display><type>article</type><title>The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel</title><source>Springer Link</source><creator>Shih, Chia-Chang ; Ho, New-Jin ; Huang, Hsing-Lu</creator><creatorcontrib>Shih, Chia-Chang ; Ho, New-Jin ; Huang, Hsing-Lu</creatorcontrib><description>There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2  μ m were very hard to find when total strain amplitude (Δ ε /2) was controlled to within 0.1 pct. When Δ ε /2 is increased to 0.125 to 0.3 pct, secondary cyclic hardening takes place prior to fatigue failure. Δ ε /2 = 0.6 pct, following an initial rapid-hardening stage. Dislocation cells smaller than 2  μ m tend to develop near grain boundaries and triple junction of the grains while cycling just above Δ ε /2 = 0.125 pct. Such dislocation development results in secondary hardening. However, no failure occurs if cycling just below Δ ε /2 = 0.1 pct; hence, the fatigue limit for IF steel should be very close to Δ ε /2 = 0.1 pct.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-010-0186-6</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Behavior ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crack initiation ; Exact sciences and technology ; Fatigue ; Materials Science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metal fatigue ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-08, Vol.41 (8), p.1995-2001</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science &amp; Business Media Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23</citedby><cites>FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23009790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shih, Chia-Chang</creatorcontrib><creatorcontrib>Ho, New-Jin</creatorcontrib><creatorcontrib>Huang, Hsing-Lu</creatorcontrib><title>The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2  μ m were very hard to find when total strain amplitude (Δ ε /2) was controlled to within 0.1 pct. When Δ ε /2 is increased to 0.125 to 0.3 pct, secondary cyclic hardening takes place prior to fatigue failure. Δ ε /2 = 0.6 pct, following an initial rapid-hardening stage. Dislocation cells smaller than 2  μ m tend to develop near grain boundaries and triple junction of the grains while cycling just above Δ ε /2 = 0.125 pct. Such dislocation development results in secondary hardening. However, no failure occurs if cycling just below Δ ε /2 = 0.1 pct; hence, the fatigue limit for IF steel should be very close to Δ ε /2 = 0.1 pct.</description><subject>Applied sciences</subject><subject>Behavior</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crack initiation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Materials Science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metal fatigue</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNsieIxONtmkOWq1Wih4sJ5DNpu0KetuTbJC_70pLXryMMzAfO_N8BC6JnBHAMR9JIRzgoFArgnH_ASNSMUoJpLBaZ5BUFzxkp6jixg3AEAk5SO0XK5t8Z6GZlf0rpjp5FeDLR7tWn_7PsRCd03x5GPbm7zqu4yGwaQh2Fj4rph3yYaYfPK6xbNg91bWtpfozOk22qtjH6OP2fNy-ooXby_z6cMCG0ZIwsZIEGxSOeuAaikoJVAxJ2rRaFY7ShtTC2JLsI2mnDWMVkLbsmpqDpVpSjpGNwffbei_BhuT2vRD6PJJNeFZUVEpM0QOkAl9jME6tQ3-U4edIqD22alDdipnp_bZKZ41t0djHY1uXdCd8fFXWFIAKSRkrjxwMa-6lQ1_D_xv_gM5AH49</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Shih, Chia-Chang</creator><creator>Ho, New-Jin</creator><creator>Huang, Hsing-Lu</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100801</creationdate><title>The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel</title><author>Shih, Chia-Chang ; Ho, New-Jin ; Huang, Hsing-Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Behavior</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crack initiation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Materials Science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metal fatigue</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shih, Chia-Chang</creatorcontrib><creatorcontrib>Ho, New-Jin</creatorcontrib><creatorcontrib>Huang, Hsing-Lu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shih, Chia-Chang</au><au>Ho, New-Jin</au><au>Huang, Hsing-Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>41</volume><issue>8</issue><spage>1995</spage><epage>2001</epage><pages>1995-2001</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>There are three types of cyclic hardening for cyclically deformed interstitial-free (IF) steels. The magnitude of cyclic hardening was unobvious and dislocation cells smaller than 2  μ m were very hard to find when total strain amplitude (Δ ε /2) was controlled to within 0.1 pct. When Δ ε /2 is increased to 0.125 to 0.3 pct, secondary cyclic hardening takes place prior to fatigue failure. Δ ε /2 = 0.6 pct, following an initial rapid-hardening stage. Dislocation cells smaller than 2  μ m tend to develop near grain boundaries and triple junction of the grains while cycling just above Δ ε /2 = 0.125 pct. Such dislocation development results in secondary hardening. However, no failure occurs if cycling just below Δ ε /2 = 0.1 pct; hence, the fatigue limit for IF steel should be very close to Δ ε /2 = 0.1 pct.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-010-0186-6</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-08, Vol.41 (8), p.1995-2001
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_863645399
source Springer Link
subjects Applied sciences
Behavior
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crack initiation
Exact sciences and technology
Fatigue
Materials Science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metal fatigue
Metallic Materials
Metals. Metallurgy
Nanotechnology
Structural Materials
Surfaces and Interfaces
Thin Films
title The Study of Fatigue Behaviors and Dislocation Structures in Interstitial-Free Steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Study%20of%20Fatigue%20Behaviors%20and%20Dislocation%20Structures%20in%20Interstitial-Free%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Shih,%20Chia-Chang&rft.date=2010-08-01&rft.volume=41&rft.issue=8&rft.spage=1995&rft.epage=2001&rft.pages=1995-2001&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-010-0186-6&rft_dat=%3Cproquest_cross%3E2331077961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-cc907485fef03a97331054f7b7da4bf33dcb71e20eda364d4357ae25db605cd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863645399&rft_id=info:pmid/&rfr_iscdi=true