Loading…

An Observing System Experiment for Tropical Cyclone Targeting Techniques Using the Global Forecast System

In 1997, the National Oceanic and Atmospheric Administration’s National Hurricane Center and the Hurricane Research Division began operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve the numerical guidance for hurricanes that threaten the continental United S...

Full description

Saved in:
Bibliographic Details
Published in:Monthly weather review 2011-03, Vol.139 (3), p.895-907
Main Authors: ABERSON, Sim D, MAJUMDAR, Sharanya J, REYNOLDS, Carolyn A, ETHERTON, Brian J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In 1997, the National Oceanic and Atmospheric Administration’s National Hurricane Center and the Hurricane Research Division began operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve the numerical guidance for hurricanes that threaten the continental United States, Puerto Rico, the U.S. Virgin Islands, and Hawaii. The dropwindsonde observations from these missions were processed and formatted aboard the aircraft and sent to the National Centers for Environmental Prediction and the Global Telecommunications System to be ingested into the Global Forecasting System, which serves as initial and boundary conditions for regional numerical models that also forecast tropical cyclone track and intensity. As a result of limited aircraft resources, optimal observing strategies for these missions are investigated. An Observing System Experiment in which different configurations of the dropwindsonde data based on three targeting techniques (ensemble variance, ensemble transform Kalman filter, and total energy singular vectors) are assimilated into the model system was conducted. All three techniques show some promise in obtaining maximal forecast improvements while limiting flight time and expendables. The data taken within and around the regions specified by the total energy singular vectors provide the largest forecast improvements, though the sample size is too small to make any operational recommendations. Case studies show that the impact of dropwindsonde data obtained either outside of fully sampled, or within nonfully sampled target regions is generally, though not always, small; this suggests that the techniques are able to discern in which regions extra observations will impact the particular forecast.
ISSN:0027-0644
1520-0493
DOI:10.1175/2010mwr3397.1