Loading…
Configuring Competing Classifier Chains in Distributed Stream Mining Systems
Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we dev...
Saved in:
Published in: | IEEE journal of selected topics in signal processing 2007-12, Vol.1 (4), p.548-563 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663 |
container_end_page | 563 |
container_issue | 4 |
container_start_page | 548 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 1 |
creator | Fu Fangwen Turaga, D.S. Verscheure, O. van der Schaar, M. Amini, L. |
description | Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we develop algorithms to optimally configure networks (chains) of such classifiers given system processing resource constraints. We first formally define a global performance metric for classifier chains by trading off the end-to-end probabilities of detection and false alarm. We then design centralized and distributed algorithms to provide efficient and fair resource allocation among several classifier chains competing for system resources. We use the Nash bargaining solution from game theory to ensure this. We also extend our algorithms to consider arbitrary topologies of classifier chains (with shared classifiers among competing chains). We present results for both simulated and state-of-the-art classifier chains for speaker verification operating on real telephony data, discuss the convergence of our algorithms to the optimal solution, and present interesting directions for future research. |
doi_str_mv | 10.1109/JSTSP.2007.909368 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_864081065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4407764</ieee_id><sourcerecordid>34469434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhSMEEqXwAxBLxMCW4rfjEYW3ikBKmS0nuS6u8ih2MvTfk7SIgeme4TtXR18UXWK0wBip29d8lX8sCEJyoZCiIj2KZlgxnCCWsuMpU5IwzulpdBbCBiEuBWazaJl1rXXrwbt2HWdds4V-n2oTgrMOfJx9GdeG2LXxvQu9d8XQQxXnvQfTxG-unfB8F3pownl0Yk0d4OL3zqPPx4dV9pws359esrtlUlJC-4QbVnHLZGoLKZAZpxRAMCmAEqFkJa1iAsoCKY6A2wpLAQQIElUqSFkJQefRzeHv1nffA4ReNy6UUNemhW4ImjImFKNsBK__gZtu8O24TaeCoRQjwUcIH6DSdyF4sHrrXWP8TmOkJ7l6L1dPcvVB7ti5OnQcAPzxjCEpBaM_lq11mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864081065</pqid></control><display><type>article</type><title>Configuring Competing Classifier Chains in Distributed Stream Mining Systems</title><source>IEEE Xplore (Online service)</source><creator>Fu Fangwen ; Turaga, D.S. ; Verscheure, O. ; van der Schaar, M. ; Amini, L.</creator><creatorcontrib>Fu Fangwen ; Turaga, D.S. ; Verscheure, O. ; van der Schaar, M. ; Amini, L.</creatorcontrib><description>Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we develop algorithms to optimally configure networks (chains) of such classifiers given system processing resource constraints. We first formally define a global performance metric for classifier chains by trading off the end-to-end probabilities of detection and false alarm. We then design centralized and distributed algorithms to provide efficient and fair resource allocation among several classifier chains competing for system resources. We use the Nash bargaining solution from game theory to ensure this. We also extend our algorithms to consider arbitrary topologies of classifier chains (with shared classifiers among competing chains). We present results for both simulated and state-of-the-art classifier chains for speaker verification operating on real telephony data, discuss the convergence of our algorithms to the optimal solution, and present interesting directions for future research.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2007.909368</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Distributed algorithms ; Measurement ; Nash bargaining solutions ; Network servers ; Network topology ; networked classifiers ; Quality of service ; Resource management ; Scalability ; Signal processing algorithms ; stream mining ; Streaming media ; Studies</subject><ispartof>IEEE journal of selected topics in signal processing, 2007-12, Vol.1 (4), p.548-563</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663</citedby><cites>FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4407764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fu Fangwen</creatorcontrib><creatorcontrib>Turaga, D.S.</creatorcontrib><creatorcontrib>Verscheure, O.</creatorcontrib><creatorcontrib>van der Schaar, M.</creatorcontrib><creatorcontrib>Amini, L.</creatorcontrib><title>Configuring Competing Classifier Chains in Distributed Stream Mining Systems</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we develop algorithms to optimally configure networks (chains) of such classifiers given system processing resource constraints. We first formally define a global performance metric for classifier chains by trading off the end-to-end probabilities of detection and false alarm. We then design centralized and distributed algorithms to provide efficient and fair resource allocation among several classifier chains competing for system resources. We use the Nash bargaining solution from game theory to ensure this. We also extend our algorithms to consider arbitrary topologies of classifier chains (with shared classifiers among competing chains). We present results for both simulated and state-of-the-art classifier chains for speaker verification operating on real telephony data, discuss the convergence of our algorithms to the optimal solution, and present interesting directions for future research.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Distributed algorithms</subject><subject>Measurement</subject><subject>Nash bargaining solutions</subject><subject>Network servers</subject><subject>Network topology</subject><subject>networked classifiers</subject><subject>Quality of service</subject><subject>Resource management</subject><subject>Scalability</subject><subject>Signal processing algorithms</subject><subject>stream mining</subject><subject>Streaming media</subject><subject>Studies</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhSMEEqXwAxBLxMCW4rfjEYW3ikBKmS0nuS6u8ih2MvTfk7SIgeme4TtXR18UXWK0wBip29d8lX8sCEJyoZCiIj2KZlgxnCCWsuMpU5IwzulpdBbCBiEuBWazaJl1rXXrwbt2HWdds4V-n2oTgrMOfJx9GdeG2LXxvQu9d8XQQxXnvQfTxG-unfB8F3pownl0Yk0d4OL3zqPPx4dV9pws359esrtlUlJC-4QbVnHLZGoLKZAZpxRAMCmAEqFkJa1iAsoCKY6A2wpLAQQIElUqSFkJQefRzeHv1nffA4ReNy6UUNemhW4ImjImFKNsBK__gZtu8O24TaeCoRQjwUcIH6DSdyF4sHrrXWP8TmOkJ7l6L1dPcvVB7ti5OnQcAPzxjCEpBaM_lq11mA</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Fu Fangwen</creator><creator>Turaga, D.S.</creator><creator>Verscheure, O.</creator><creator>van der Schaar, M.</creator><creator>Amini, L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20071201</creationdate><title>Configuring Competing Classifier Chains in Distributed Stream Mining Systems</title><author>Fu Fangwen ; Turaga, D.S. ; Verscheure, O. ; van der Schaar, M. ; Amini, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Distributed algorithms</topic><topic>Measurement</topic><topic>Nash bargaining solutions</topic><topic>Network servers</topic><topic>Network topology</topic><topic>networked classifiers</topic><topic>Quality of service</topic><topic>Resource management</topic><topic>Scalability</topic><topic>Signal processing algorithms</topic><topic>stream mining</topic><topic>Streaming media</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu Fangwen</creatorcontrib><creatorcontrib>Turaga, D.S.</creatorcontrib><creatorcontrib>Verscheure, O.</creatorcontrib><creatorcontrib>van der Schaar, M.</creatorcontrib><creatorcontrib>Amini, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu Fangwen</au><au>Turaga, D.S.</au><au>Verscheure, O.</au><au>van der Schaar, M.</au><au>Amini, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configuring Competing Classifier Chains in Distributed Stream Mining Systems</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>1</volume><issue>4</issue><spage>548</spage><epage>563</epage><pages>548-563</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we develop algorithms to optimally configure networks (chains) of such classifiers given system processing resource constraints. We first formally define a global performance metric for classifier chains by trading off the end-to-end probabilities of detection and false alarm. We then design centralized and distributed algorithms to provide efficient and fair resource allocation among several classifier chains competing for system resources. We use the Nash bargaining solution from game theory to ensure this. We also extend our algorithms to consider arbitrary topologies of classifier chains (with shared classifiers among competing chains). We present results for both simulated and state-of-the-art classifier chains for speaker verification operating on real telephony data, discuss the convergence of our algorithms to the optimal solution, and present interesting directions for future research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2007.909368</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2007-12, Vol.1 (4), p.548-563 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_proquest_journals_864081065 |
source | IEEE Xplore (Online service) |
subjects | Algorithm design and analysis Algorithms Distributed algorithms Measurement Nash bargaining solutions Network servers Network topology networked classifiers Quality of service Resource management Scalability Signal processing algorithms stream mining Streaming media Studies |
title | Configuring Competing Classifier Chains in Distributed Stream Mining Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configuring%20Competing%20Classifier%20Chains%20in%20Distributed%20Stream%20Mining%20Systems&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Fu%20Fangwen&rft.date=2007-12-01&rft.volume=1&rft.issue=4&rft.spage=548&rft.epage=563&rft.pages=548-563&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2007.909368&rft_dat=%3Cproquest_cross%3E34469434%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864081065&rft_id=info:pmid/&rft_ieee_id=4407764&rfr_iscdi=true |