Loading…

Configuring Competing Classifier Chains in Distributed Stream Mining Systems

Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we dev...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in signal processing 2007-12, Vol.1 (4), p.548-563
Main Authors: Fu Fangwen, Turaga, D.S., Verscheure, O., van der Schaar, M., Amini, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663
cites cdi_FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663
container_end_page 563
container_issue 4
container_start_page 548
container_title IEEE journal of selected topics in signal processing
container_volume 1
creator Fu Fangwen
Turaga, D.S.
Verscheure, O.
van der Schaar, M.
Amini, L.
description Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we develop algorithms to optimally configure networks (chains) of such classifiers given system processing resource constraints. We first formally define a global performance metric for classifier chains by trading off the end-to-end probabilities of detection and false alarm. We then design centralized and distributed algorithms to provide efficient and fair resource allocation among several classifier chains competing for system resources. We use the Nash bargaining solution from game theory to ensure this. We also extend our algorithms to consider arbitrary topologies of classifier chains (with shared classifiers among competing chains). We present results for both simulated and state-of-the-art classifier chains for speaker verification operating on real telephony data, discuss the convergence of our algorithms to the optimal solution, and present interesting directions for future research.
doi_str_mv 10.1109/JSTSP.2007.909368
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_864081065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4407764</ieee_id><sourcerecordid>34469434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhSMEEqXwAxBLxMCW4rfjEYW3ikBKmS0nuS6u8ih2MvTfk7SIgeme4TtXR18UXWK0wBip29d8lX8sCEJyoZCiIj2KZlgxnCCWsuMpU5IwzulpdBbCBiEuBWazaJl1rXXrwbt2HWdds4V-n2oTgrMOfJx9GdeG2LXxvQu9d8XQQxXnvQfTxG-unfB8F3pownl0Yk0d4OL3zqPPx4dV9pws359esrtlUlJC-4QbVnHLZGoLKZAZpxRAMCmAEqFkJa1iAsoCKY6A2wpLAQQIElUqSFkJQefRzeHv1nffA4ReNy6UUNemhW4ImjImFKNsBK__gZtu8O24TaeCoRQjwUcIH6DSdyF4sHrrXWP8TmOkJ7l6L1dPcvVB7ti5OnQcAPzxjCEpBaM_lq11mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864081065</pqid></control><display><type>article</type><title>Configuring Competing Classifier Chains in Distributed Stream Mining Systems</title><source>IEEE Xplore (Online service)</source><creator>Fu Fangwen ; Turaga, D.S. ; Verscheure, O. ; van der Schaar, M. ; Amini, L.</creator><creatorcontrib>Fu Fangwen ; Turaga, D.S. ; Verscheure, O. ; van der Schaar, M. ; Amini, L.</creatorcontrib><description>Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we develop algorithms to optimally configure networks (chains) of such classifiers given system processing resource constraints. We first formally define a global performance metric for classifier chains by trading off the end-to-end probabilities of detection and false alarm. We then design centralized and distributed algorithms to provide efficient and fair resource allocation among several classifier chains competing for system resources. We use the Nash bargaining solution from game theory to ensure this. We also extend our algorithms to consider arbitrary topologies of classifier chains (with shared classifiers among competing chains). We present results for both simulated and state-of-the-art classifier chains for speaker verification operating on real telephony data, discuss the convergence of our algorithms to the optimal solution, and present interesting directions for future research.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2007.909368</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Distributed algorithms ; Measurement ; Nash bargaining solutions ; Network servers ; Network topology ; networked classifiers ; Quality of service ; Resource management ; Scalability ; Signal processing algorithms ; stream mining ; Streaming media ; Studies</subject><ispartof>IEEE journal of selected topics in signal processing, 2007-12, Vol.1 (4), p.548-563</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663</citedby><cites>FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4407764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fu Fangwen</creatorcontrib><creatorcontrib>Turaga, D.S.</creatorcontrib><creatorcontrib>Verscheure, O.</creatorcontrib><creatorcontrib>van der Schaar, M.</creatorcontrib><creatorcontrib>Amini, L.</creatorcontrib><title>Configuring Competing Classifier Chains in Distributed Stream Mining Systems</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we develop algorithms to optimally configure networks (chains) of such classifiers given system processing resource constraints. We first formally define a global performance metric for classifier chains by trading off the end-to-end probabilities of detection and false alarm. We then design centralized and distributed algorithms to provide efficient and fair resource allocation among several classifier chains competing for system resources. We use the Nash bargaining solution from game theory to ensure this. We also extend our algorithms to consider arbitrary topologies of classifier chains (with shared classifiers among competing chains). We present results for both simulated and state-of-the-art classifier chains for speaker verification operating on real telephony data, discuss the convergence of our algorithms to the optimal solution, and present interesting directions for future research.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Distributed algorithms</subject><subject>Measurement</subject><subject>Nash bargaining solutions</subject><subject>Network servers</subject><subject>Network topology</subject><subject>networked classifiers</subject><subject>Quality of service</subject><subject>Resource management</subject><subject>Scalability</subject><subject>Signal processing algorithms</subject><subject>stream mining</subject><subject>Streaming media</subject><subject>Studies</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhSMEEqXwAxBLxMCW4rfjEYW3ikBKmS0nuS6u8ih2MvTfk7SIgeme4TtXR18UXWK0wBip29d8lX8sCEJyoZCiIj2KZlgxnCCWsuMpU5IwzulpdBbCBiEuBWazaJl1rXXrwbt2HWdds4V-n2oTgrMOfJx9GdeG2LXxvQu9d8XQQxXnvQfTxG-unfB8F3pownl0Yk0d4OL3zqPPx4dV9pws359esrtlUlJC-4QbVnHLZGoLKZAZpxRAMCmAEqFkJa1iAsoCKY6A2wpLAQQIElUqSFkJQefRzeHv1nffA4ReNy6UUNemhW4ImjImFKNsBK__gZtu8O24TaeCoRQjwUcIH6DSdyF4sHrrXWP8TmOkJ7l6L1dPcvVB7ti5OnQcAPzxjCEpBaM_lq11mA</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Fu Fangwen</creator><creator>Turaga, D.S.</creator><creator>Verscheure, O.</creator><creator>van der Schaar, M.</creator><creator>Amini, L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20071201</creationdate><title>Configuring Competing Classifier Chains in Distributed Stream Mining Systems</title><author>Fu Fangwen ; Turaga, D.S. ; Verscheure, O. ; van der Schaar, M. ; Amini, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Distributed algorithms</topic><topic>Measurement</topic><topic>Nash bargaining solutions</topic><topic>Network servers</topic><topic>Network topology</topic><topic>networked classifiers</topic><topic>Quality of service</topic><topic>Resource management</topic><topic>Scalability</topic><topic>Signal processing algorithms</topic><topic>stream mining</topic><topic>Streaming media</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu Fangwen</creatorcontrib><creatorcontrib>Turaga, D.S.</creatorcontrib><creatorcontrib>Verscheure, O.</creatorcontrib><creatorcontrib>van der Schaar, M.</creatorcontrib><creatorcontrib>Amini, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu Fangwen</au><au>Turaga, D.S.</au><au>Verscheure, O.</au><au>van der Schaar, M.</au><au>Amini, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configuring Competing Classifier Chains in Distributed Stream Mining Systems</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>1</volume><issue>4</issue><spage>548</spage><epage>563</epage><pages>548-563</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. In this paper, we develop algorithms to optimally configure networks (chains) of such classifiers given system processing resource constraints. We first formally define a global performance metric for classifier chains by trading off the end-to-end probabilities of detection and false alarm. We then design centralized and distributed algorithms to provide efficient and fair resource allocation among several classifier chains competing for system resources. We use the Nash bargaining solution from game theory to ensure this. We also extend our algorithms to consider arbitrary topologies of classifier chains (with shared classifiers among competing chains). We present results for both simulated and state-of-the-art classifier chains for speaker verification operating on real telephony data, discuss the convergence of our algorithms to the optimal solution, and present interesting directions for future research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2007.909368</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2007-12, Vol.1 (4), p.548-563
issn 1932-4553
1941-0484
language eng
recordid cdi_proquest_journals_864081065
source IEEE Xplore (Online service)
subjects Algorithm design and analysis
Algorithms
Distributed algorithms
Measurement
Nash bargaining solutions
Network servers
Network topology
networked classifiers
Quality of service
Resource management
Scalability
Signal processing algorithms
stream mining
Streaming media
Studies
title Configuring Competing Classifier Chains in Distributed Stream Mining Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configuring%20Competing%20Classifier%20Chains%20in%20Distributed%20Stream%20Mining%20Systems&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Fu%20Fangwen&rft.date=2007-12-01&rft.volume=1&rft.issue=4&rft.spage=548&rft.epage=563&rft.pages=548-563&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2007.909368&rft_dat=%3Cproquest_cross%3E34469434%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-5a4d5f478fb760a057be212be32697d7f946ecb0950e5fd176e2e206d862cd663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864081065&rft_id=info:pmid/&rft_ieee_id=4407764&rfr_iscdi=true