Loading…

Occupant Classification Using Range Images

Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional fun...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2007-07, Vol.56 (4), p.1983-1993
Main Authors: Devarakota, Pandu Rangarao, Castillo-Franco, Marta, Ginhoux, Romuald, Mirbach, Bruno, Ottersten, BjÖrn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143
cites cdi_FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143
container_end_page 1993
container_issue 4
container_start_page 1983
container_title IEEE transactions on vehicular technology
container_volume 56
creator Devarakota, Pandu Rangarao
Castillo-Franco, Marta
Ginhoux, Romuald
Mirbach, Bruno
Ottersten, BjÖrn
description Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional functionalities like dynamic occupant-position analysis or child-seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low-resolution range sensor, which is based on the time-of-flight principle. This range sensor is advantageous, since it provides directly a dense range image that is independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant-classification system, using a novel low-resolution range image sensor, is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian mixture-model classifier, and polynomial classifier are compared to a clustering-based linear-regression classifier using a polynomial kernel. The latter one shows improved results compared to the first-three classification methods. Full-scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application.
doi_str_mv 10.1109/TVT.2007.897645
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_864138163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277069</ieee_id><sourcerecordid>880657120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpodu05x56WQJtINQbjSVZ0jFskjYQCJRNrmKsHW2VeO2NZVP676PFIYEc2tPwmG8evHmMfQa-AOD2ZHW7WpSc64WxupLqDZuBFbawQtm3bMY5mMIqqd6zDyndZSmlhRk7vvZ-3GE7zJcNphRD9DjErp3fpNhu5r-w3dD8cosbSh_Zu4BNok9P84DdXJyvlj-Lq-sfl8vTq8JLxYeipmyukHtBpQ211qTFOiisJCi75oBUE5qsce0teR2CqREDqkrqNYAUB-z75Jv-0G6s3a6PW-z_ug6jO4u3p67rN-5--O2gMmWZ8aMJ3_Xdw0hpcNuYPDUNttSNyVkuquyq4L-kMbxSGkqeyW__JIWUwLVVGTx8Bd51Y9_m9ziTAwsDlcjQyQT5vkupp_AcCbjbd-dyd27fnZu6yxdfn2wxeWxCj62P6eXMWMVL2Gf_MnGRiJ7XstSaV1Y8AqngoHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864138163</pqid></control><display><type>article</type><title>Occupant Classification Using Range Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Devarakota, Pandu Rangarao ; Castillo-Franco, Marta ; Ginhoux, Romuald ; Mirbach, Bruno ; Ottersten, BjÖrn</creator><creatorcontrib>Devarakota, Pandu Rangarao ; Castillo-Franco, Marta ; Ginhoux, Romuald ; Mirbach, Bruno ; Ottersten, BjÖrn</creatorcontrib><description>Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional functionalities like dynamic occupant-position analysis or child-seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low-resolution range sensor, which is based on the time-of-flight principle. This range sensor is advantageous, since it provides directly a dense range image that is independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant-classification system, using a novel low-resolution range image sensor, is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian mixture-model classifier, and polynomial classifier are compared to a clustering-based linear-regression classifier using a polynomial kernel. The latter one shows improved results compared to the first-three classification methods. Full-scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application.</description><identifier>ISSN: 0018-9545</identifier><identifier>ISSN: 1939-9359</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2007.897645</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>algorithms ; Applied sciences ; Artificial intelligence ; Classification ; Classifiers ; Clustering ; Computer science; control theory; systems ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Feature extraction ; Focusing ; Image processing ; Image sensors ; Information, signal and communications theory ; Intelligent sensors ; Kernel ; Lighting ; Miscellaneous ; Pattern recognition. Digital image processing. Computational geometry ; polynomial classification ; Polynomials ; range imaging ; real-time vision ; Robustness ; Sensor systems ; Sensors ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Studies ; Surface layer ; Telecommunications and information theory ; Testing ; Texture ; three-dimensional object classification ; time-of-flight principle</subject><ispartof>IEEE transactions on vehicular technology, 2007-07, Vol.56 (4), p.1983-1993</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143</citedby><cites>FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18950212$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-16822$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Devarakota, Pandu Rangarao</creatorcontrib><creatorcontrib>Castillo-Franco, Marta</creatorcontrib><creatorcontrib>Ginhoux, Romuald</creatorcontrib><creatorcontrib>Mirbach, Bruno</creatorcontrib><creatorcontrib>Ottersten, BjÖrn</creatorcontrib><title>Occupant Classification Using Range Images</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional functionalities like dynamic occupant-position analysis or child-seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low-resolution range sensor, which is based on the time-of-flight principle. This range sensor is advantageous, since it provides directly a dense range image that is independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant-classification system, using a novel low-resolution range image sensor, is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian mixture-model classifier, and polynomial classifier are compared to a clustering-based linear-regression classifier using a polynomial kernel. The latter one shows improved results compared to the first-three classification methods. Full-scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application.</description><subject>algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Clustering</subject><subject>Computer science; control theory; systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Focusing</subject><subject>Image processing</subject><subject>Image sensors</subject><subject>Information, signal and communications theory</subject><subject>Intelligent sensors</subject><subject>Kernel</subject><subject>Lighting</subject><subject>Miscellaneous</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>polynomial classification</subject><subject>Polynomials</subject><subject>range imaging</subject><subject>real-time vision</subject><subject>Robustness</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Texture</subject><subject>three-dimensional object classification</subject><subject>time-of-flight principle</subject><issn>0018-9545</issn><issn>1939-9359</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVpodu05x56WQJtINQbjSVZ0jFskjYQCJRNrmKsHW2VeO2NZVP676PFIYEc2tPwmG8evHmMfQa-AOD2ZHW7WpSc64WxupLqDZuBFbawQtm3bMY5mMIqqd6zDyndZSmlhRk7vvZ-3GE7zJcNphRD9DjErp3fpNhu5r-w3dD8cosbSh_Zu4BNok9P84DdXJyvlj-Lq-sfl8vTq8JLxYeipmyukHtBpQ211qTFOiisJCi75oBUE5qsce0teR2CqREDqkrqNYAUB-z75Jv-0G6s3a6PW-z_ug6jO4u3p67rN-5--O2gMmWZ8aMJ3_Xdw0hpcNuYPDUNttSNyVkuquyq4L-kMbxSGkqeyW__JIWUwLVVGTx8Bd51Y9_m9ziTAwsDlcjQyQT5vkupp_AcCbjbd-dyd27fnZu6yxdfn2wxeWxCj62P6eXMWMVL2Gf_MnGRiJ7XstSaV1Y8AqngoHM</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Devarakota, Pandu Rangarao</creator><creator>Castillo-Franco, Marta</creator><creator>Ginhoux, Romuald</creator><creator>Mirbach, Bruno</creator><creator>Ottersten, BjÖrn</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20070701</creationdate><title>Occupant Classification Using Range Images</title><author>Devarakota, Pandu Rangarao ; Castillo-Franco, Marta ; Ginhoux, Romuald ; Mirbach, Bruno ; Ottersten, BjÖrn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Clustering</topic><topic>Computer science; control theory; systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Focusing</topic><topic>Image processing</topic><topic>Image sensors</topic><topic>Information, signal and communications theory</topic><topic>Intelligent sensors</topic><topic>Kernel</topic><topic>Lighting</topic><topic>Miscellaneous</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>polynomial classification</topic><topic>Polynomials</topic><topic>range imaging</topic><topic>real-time vision</topic><topic>Robustness</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Texture</topic><topic>three-dimensional object classification</topic><topic>time-of-flight principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devarakota, Pandu Rangarao</creatorcontrib><creatorcontrib>Castillo-Franco, Marta</creatorcontrib><creatorcontrib>Ginhoux, Romuald</creatorcontrib><creatorcontrib>Mirbach, Bruno</creatorcontrib><creatorcontrib>Ottersten, BjÖrn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devarakota, Pandu Rangarao</au><au>Castillo-Franco, Marta</au><au>Ginhoux, Romuald</au><au>Mirbach, Bruno</au><au>Ottersten, BjÖrn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Occupant Classification Using Range Images</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>56</volume><issue>4</issue><spage>1983</spage><epage>1993</epage><pages>1983-1993</pages><issn>0018-9545</issn><issn>1939-9359</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional functionalities like dynamic occupant-position analysis or child-seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low-resolution range sensor, which is based on the time-of-flight principle. This range sensor is advantageous, since it provides directly a dense range image that is independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant-classification system, using a novel low-resolution range image sensor, is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian mixture-model classifier, and polynomial classifier are compared to a clustering-based linear-regression classifier using a polynomial kernel. The latter one shows improved results compared to the first-three classification methods. Full-scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVT.2007.897645</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2007-07, Vol.56 (4), p.1983-1993
issn 0018-9545
1939-9359
1939-9359
language eng
recordid cdi_proquest_journals_864138163
source IEEE Electronic Library (IEL) Journals
subjects algorithms
Applied sciences
Artificial intelligence
Classification
Classifiers
Clustering
Computer science
control theory
systems
Dynamical systems
Dynamics
Exact sciences and technology
Feature extraction
Focusing
Image processing
Image sensors
Information, signal and communications theory
Intelligent sensors
Kernel
Lighting
Miscellaneous
Pattern recognition. Digital image processing. Computational geometry
polynomial classification
Polynomials
range imaging
real-time vision
Robustness
Sensor systems
Sensors
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Studies
Surface layer
Telecommunications and information theory
Testing
Texture
three-dimensional object classification
time-of-flight principle
title Occupant Classification Using Range Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Occupant%20Classification%20Using%20Range%20Images&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Devarakota,%20Pandu%20Rangarao&rft.date=2007-07-01&rft.volume=56&rft.issue=4&rft.spage=1983&rft.epage=1993&rft.pages=1983-1993&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2007.897645&rft_dat=%3Cproquest_swepu%3E880657120%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864138163&rft_id=info:pmid/&rft_ieee_id=4277069&rfr_iscdi=true