Loading…
Occupant Classification Using Range Images
Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional fun...
Saved in:
Published in: | IEEE transactions on vehicular technology 2007-07, Vol.56 (4), p.1983-1993 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143 |
container_end_page | 1993 |
container_issue | 4 |
container_start_page | 1983 |
container_title | IEEE transactions on vehicular technology |
container_volume | 56 |
creator | Devarakota, Pandu Rangarao Castillo-Franco, Marta Ginhoux, Romuald Mirbach, Bruno Ottersten, BjÖrn |
description | Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional functionalities like dynamic occupant-position analysis or child-seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low-resolution range sensor, which is based on the time-of-flight principle. This range sensor is advantageous, since it provides directly a dense range image that is independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant-classification system, using a novel low-resolution range image sensor, is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian mixture-model classifier, and polynomial classifier are compared to a clustering-based linear-regression classifier using a polynomial kernel. The latter one shows improved results compared to the first-three classification methods. Full-scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application. |
doi_str_mv | 10.1109/TVT.2007.897645 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_864138163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277069</ieee_id><sourcerecordid>880657120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpodu05x56WQJtINQbjSVZ0jFskjYQCJRNrmKsHW2VeO2NZVP676PFIYEc2tPwmG8evHmMfQa-AOD2ZHW7WpSc64WxupLqDZuBFbawQtm3bMY5mMIqqd6zDyndZSmlhRk7vvZ-3GE7zJcNphRD9DjErp3fpNhu5r-w3dD8cosbSh_Zu4BNok9P84DdXJyvlj-Lq-sfl8vTq8JLxYeipmyukHtBpQ211qTFOiisJCi75oBUE5qsce0teR2CqREDqkrqNYAUB-z75Jv-0G6s3a6PW-z_ug6jO4u3p67rN-5--O2gMmWZ8aMJ3_Xdw0hpcNuYPDUNttSNyVkuquyq4L-kMbxSGkqeyW__JIWUwLVVGTx8Bd51Y9_m9ziTAwsDlcjQyQT5vkupp_AcCbjbd-dyd27fnZu6yxdfn2wxeWxCj62P6eXMWMVL2Gf_MnGRiJ7XstSaV1Y8AqngoHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864138163</pqid></control><display><type>article</type><title>Occupant Classification Using Range Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Devarakota, Pandu Rangarao ; Castillo-Franco, Marta ; Ginhoux, Romuald ; Mirbach, Bruno ; Ottersten, BjÖrn</creator><creatorcontrib>Devarakota, Pandu Rangarao ; Castillo-Franco, Marta ; Ginhoux, Romuald ; Mirbach, Bruno ; Ottersten, BjÖrn</creatorcontrib><description>Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional functionalities like dynamic occupant-position analysis or child-seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low-resolution range sensor, which is based on the time-of-flight principle. This range sensor is advantageous, since it provides directly a dense range image that is independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant-classification system, using a novel low-resolution range image sensor, is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian mixture-model classifier, and polynomial classifier are compared to a clustering-based linear-regression classifier using a polynomial kernel. The latter one shows improved results compared to the first-three classification methods. Full-scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application.</description><identifier>ISSN: 0018-9545</identifier><identifier>ISSN: 1939-9359</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2007.897645</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>algorithms ; Applied sciences ; Artificial intelligence ; Classification ; Classifiers ; Clustering ; Computer science; control theory; systems ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Feature extraction ; Focusing ; Image processing ; Image sensors ; Information, signal and communications theory ; Intelligent sensors ; Kernel ; Lighting ; Miscellaneous ; Pattern recognition. Digital image processing. Computational geometry ; polynomial classification ; Polynomials ; range imaging ; real-time vision ; Robustness ; Sensor systems ; Sensors ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Studies ; Surface layer ; Telecommunications and information theory ; Testing ; Texture ; three-dimensional object classification ; time-of-flight principle</subject><ispartof>IEEE transactions on vehicular technology, 2007-07, Vol.56 (4), p.1983-1993</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143</citedby><cites>FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18950212$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-16822$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Devarakota, Pandu Rangarao</creatorcontrib><creatorcontrib>Castillo-Franco, Marta</creatorcontrib><creatorcontrib>Ginhoux, Romuald</creatorcontrib><creatorcontrib>Mirbach, Bruno</creatorcontrib><creatorcontrib>Ottersten, BjÖrn</creatorcontrib><title>Occupant Classification Using Range Images</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional functionalities like dynamic occupant-position analysis or child-seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low-resolution range sensor, which is based on the time-of-flight principle. This range sensor is advantageous, since it provides directly a dense range image that is independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant-classification system, using a novel low-resolution range image sensor, is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian mixture-model classifier, and polynomial classifier are compared to a clustering-based linear-regression classifier using a polynomial kernel. The latter one shows improved results compared to the first-three classification methods. Full-scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application.</description><subject>algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Clustering</subject><subject>Computer science; control theory; systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Focusing</subject><subject>Image processing</subject><subject>Image sensors</subject><subject>Information, signal and communications theory</subject><subject>Intelligent sensors</subject><subject>Kernel</subject><subject>Lighting</subject><subject>Miscellaneous</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>polynomial classification</subject><subject>Polynomials</subject><subject>range imaging</subject><subject>real-time vision</subject><subject>Robustness</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Texture</subject><subject>three-dimensional object classification</subject><subject>time-of-flight principle</subject><issn>0018-9545</issn><issn>1939-9359</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVpodu05x56WQJtINQbjSVZ0jFskjYQCJRNrmKsHW2VeO2NZVP676PFIYEc2tPwmG8evHmMfQa-AOD2ZHW7WpSc64WxupLqDZuBFbawQtm3bMY5mMIqqd6zDyndZSmlhRk7vvZ-3GE7zJcNphRD9DjErp3fpNhu5r-w3dD8cosbSh_Zu4BNok9P84DdXJyvlj-Lq-sfl8vTq8JLxYeipmyukHtBpQ211qTFOiisJCi75oBUE5qsce0teR2CqREDqkrqNYAUB-z75Jv-0G6s3a6PW-z_ug6jO4u3p67rN-5--O2gMmWZ8aMJ3_Xdw0hpcNuYPDUNttSNyVkuquyq4L-kMbxSGkqeyW__JIWUwLVVGTx8Bd51Y9_m9ziTAwsDlcjQyQT5vkupp_AcCbjbd-dyd27fnZu6yxdfn2wxeWxCj62P6eXMWMVL2Gf_MnGRiJ7XstSaV1Y8AqngoHM</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Devarakota, Pandu Rangarao</creator><creator>Castillo-Franco, Marta</creator><creator>Ginhoux, Romuald</creator><creator>Mirbach, Bruno</creator><creator>Ottersten, BjÖrn</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20070701</creationdate><title>Occupant Classification Using Range Images</title><author>Devarakota, Pandu Rangarao ; Castillo-Franco, Marta ; Ginhoux, Romuald ; Mirbach, Bruno ; Ottersten, BjÖrn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Clustering</topic><topic>Computer science; control theory; systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Focusing</topic><topic>Image processing</topic><topic>Image sensors</topic><topic>Information, signal and communications theory</topic><topic>Intelligent sensors</topic><topic>Kernel</topic><topic>Lighting</topic><topic>Miscellaneous</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>polynomial classification</topic><topic>Polynomials</topic><topic>range imaging</topic><topic>real-time vision</topic><topic>Robustness</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Texture</topic><topic>three-dimensional object classification</topic><topic>time-of-flight principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devarakota, Pandu Rangarao</creatorcontrib><creatorcontrib>Castillo-Franco, Marta</creatorcontrib><creatorcontrib>Ginhoux, Romuald</creatorcontrib><creatorcontrib>Mirbach, Bruno</creatorcontrib><creatorcontrib>Ottersten, BjÖrn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devarakota, Pandu Rangarao</au><au>Castillo-Franco, Marta</au><au>Ginhoux, Romuald</au><au>Mirbach, Bruno</au><au>Ottersten, BjÖrn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Occupant Classification Using Range Images</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>56</volume><issue>4</issue><spage>1983</spage><epage>1993</epage><pages>1983-1993</pages><issn>0018-9545</issn><issn>1939-9359</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Static occupant classification is an important requirement in designing so-called "smart airbags." Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional functionalities like dynamic occupant-position analysis or child-seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low-resolution range sensor, which is based on the time-of-flight principle. This range sensor is advantageous, since it provides directly a dense range image that is independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant-classification system, using a novel low-resolution range image sensor, is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian mixture-model classifier, and polynomial classifier are compared to a clustering-based linear-regression classifier using a polynomial kernel. The latter one shows improved results compared to the first-three classification methods. Full-scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVT.2007.897645</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2007-07, Vol.56 (4), p.1983-1993 |
issn | 0018-9545 1939-9359 1939-9359 |
language | eng |
recordid | cdi_proquest_journals_864138163 |
source | IEEE Electronic Library (IEL) Journals |
subjects | algorithms Applied sciences Artificial intelligence Classification Classifiers Clustering Computer science control theory systems Dynamical systems Dynamics Exact sciences and technology Feature extraction Focusing Image processing Image sensors Information, signal and communications theory Intelligent sensors Kernel Lighting Miscellaneous Pattern recognition. Digital image processing. Computational geometry polynomial classification Polynomials range imaging real-time vision Robustness Sensor systems Sensors Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Studies Surface layer Telecommunications and information theory Testing Texture three-dimensional object classification time-of-flight principle |
title | Occupant Classification Using Range Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Occupant%20Classification%20Using%20Range%20Images&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Devarakota,%20Pandu%20Rangarao&rft.date=2007-07-01&rft.volume=56&rft.issue=4&rft.spage=1983&rft.epage=1993&rft.pages=1983-1993&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2007.897645&rft_dat=%3Cproquest_swepu%3E880657120%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-be0015a0c3e29fb77e73df5a64159d01aebea85a6adc9ec7ff8baafa5647d1143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864138163&rft_id=info:pmid/&rft_ieee_id=4277069&rfr_iscdi=true |