Loading…

Throughput Analysis of IEEE802.11 Multi-Hop Ad Hoc Networks

In multi-hop ad hoc networks, stations may pump more traffic into the networks than can be supported, resulting in high packet-loss rate, re-routing instability and unfairness problems. This paper shows that controlling the offered load at the sources can eliminate these problems. To verify the simu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2007-04, Vol.15 (2), p.309-322
Main Authors: Ng, Ping Chung, Liew, Soung Chang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In multi-hop ad hoc networks, stations may pump more traffic into the networks than can be supported, resulting in high packet-loss rate, re-routing instability and unfairness problems. This paper shows that controlling the offered load at the sources can eliminate these problems. To verify the simulation results, we set up a real 6-node multi-hop network. The experimental measurements confirm the existence of the optimal offered load. In addition, we provide an analysis to estimate the optimal offered load that maximizes the throughput of a multi-hop traffic flow. We believe this is a first paper in the literature to provide a quantitative analysis (as opposed to simulation) for the impact of hidden nodes and signal capture on sustainable throughput. The analysis is based on the observation that a large-scale 802.11 network with hidden nodes is a network in which the carrier-sensing capability breaks down partially. Its performance is therefore somewhere between that of a carrier-sensing network and that of an Aloha network. Indeed, our analytical closed-form solution has the appearance of the throughput equation of the Aloha network. Our approach allows one to identify whether the performance of an 802.11 network is hidden-node limited or spatial-reuse limited
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2007.892848