Loading…

Inclusion of local environmental conditions alters high-latitude vegetation change predictions based on bioclimatic models

Current predictions of how species will respond to climate change are typically based on coarse-grained climate surfaces utilizing bioclimate envelope modelling. However, the suitability of environmental conditions for a given species might result from a variety of factors including some unrelated t...

Full description

Saved in:
Bibliographic Details
Published in:Polar biology 2011-06, Vol.34 (6), p.883-897
Main Authors: Sormunen, Henna, Virtanen, Risto, Luoto, Miska
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current predictions of how species will respond to climate change are typically based on coarse-grained climate surfaces utilizing bioclimate envelope modelling. However, the suitability of environmental conditions for a given species might result from a variety of factors including some unrelated to climate. To address this issue, we investigated whether the inclusion of topographical and soil information in bioclimatic envelope models would significantly alter predictions of climate change—induced fine-scale tree and shrub species range size changes at the tree-limit in subarctic Europe. Using generalized additive models and data on current climate and species distributions and three different climate scenarios for the period 2040–2069, we developed predictions of the currently suitable area and potential range size changes of seven tree and shrub species in an area of 1,100 km 2 at a resolution of 1-ha. The inclusion of topography and soil information increased the predictive accuracy of climate-only models for all studied species. The predicted changes in species distribution volumes were contradictory, and the predicted occurrences varied greatly depending on the model used. Our results therefore support the arguments that vegetation responses to climate change can be influenced by local environmental conditions and that attention should be paid to the combined effects of these factors. We conclude that disregarding local topography and soil conditions in bioclimatic models may result in biased projections of range expansions and the associated colonization, extinction and turnover assessments.
ISSN:0722-4060
1432-2056
DOI:10.1007/s00300-010-0945-2