Loading…
An Optimum Algorithm for Compacting Error Traces for Efficient Design Error Debugging
Diagnosing counterexamples with error traces has acted as one of the most critical steps in functional verification. Unfortunately, error traces are normally very lengthy such that designers need to spend considerable effort to understand them. To alleviate the designers' burden for debugging,...
Saved in:
Published in: | IEEE transactions on computers 2006-11, Vol.55 (11), p.1356-1366 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diagnosing counterexamples with error traces has acted as one of the most critical steps in functional verification. Unfortunately, error traces are normally very lengthy such that designers need to spend considerable effort to understand them. To alleviate the designers' burden for debugging, we present a SAT-based algorithm for reducing the lengths of error traces. The algorithm performs the paradigm of the binary search algorithm to halve the search space recursively. Furthermore, it applies a novel theorem to guarantee gaining the shortest lengths for the error traces. Based on the optimum algorithm, we develop two robust heuristics to handle real designs. Experimental results demonstrate that our approaches greatly surpass previous work and, indeed, have promising solutions |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/TC.2006.174 |