Loading…

Parallel coupled numerical simulation of electric and turbulent gas flow field for SF/sub 6/ circuit breaker

The dielectric recovery characteristic of high voltage circuit breaker (HVCB) is determined by the interaction of the electric field and the flow field in interrupting course, the calculation field of electric and gas flow are different, and the initial computation and boundary conditions are also d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2006-04, Vol.42 (4), p.1063-1066
Main Authors: Yundong Cao, Yundong Cao, Luze Zhao, Luze Zhao, Xiaoming Liu, Xiaoming Liu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dielectric recovery characteristic of high voltage circuit breaker (HVCB) is determined by the interaction of the electric field and the flow field in interrupting course, the calculation field of electric and gas flow are different, and the initial computation and boundary conditions are also different. For obtaining the corresponding data to numerically solve the dielectric recovery characteristic of the CB, the parallel coupled strategy is proposed and employed for computing the coupled electric and flow field. Moreover, in the pre-processing, the sub-region meshing method is used and the elements in some region with rapid variation are densified. The feasibility and practicability of the proposed method with high efficiency has been verified by the demonstration example. And the distribution of the flow field, the electric field and the curve of the dielectric recovery characteristic in the whole interrupting course have been obtained. The location of the minimum of the dielectric recovery characteristic during the course of interrupting is traced. Furthermore, the coupled strategy in parallel can effectively calculate the dielectric recovery strength. And discussions about the acquired results are presented
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2006.871943