Loading…

Efficient simulation of airborne SAR raw data of extended scenes

In a previous paper, a two-dimensional Fourier domain synthetic aperture radar (SAR) raw signal simulator that exploits the efficiency of fast Fourier transform algorithms was presented. It accounts for the effects of sensor trajectory deviations and is able to generate the raw signal corresponding...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2006-10, Vol.44 (10), p.2851-2860
Main Authors: Franceschetti, G., Iodice, A., Perna, S., Riccio, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a previous paper, a two-dimensional Fourier domain synthetic aperture radar (SAR) raw signal simulator that exploits the efficiency of fast Fourier transform algorithms was presented. It accounts for the effects of sensor trajectory deviations and is able to generate the raw signal corresponding to extended scenes in a few seconds. However, a narrow-beam-slow-deviation assumption is made; hence, the approach can be applied only to some SAR systems and/or trajectory deviations. To overcome this limitation, in this paper, we show that the narrow-beam-slow-deviation assumption can be relaxed, at the expense of computation efficiency, if use is made of one-dimensional azimuth Fourier domain processing followed by range time-domain integration. The latter approach only requires some reasonable assumptions on the sensor motion and on the SAR system features; hence, it can be used for airborne SAR systems, and turns out to be still much more efficient than the time-domain one; hence, extended scenes can still be considered. Validity limits of the approach are also analytically evaluated, and several simulation results are finally presented to verify the effectiveness of the proposed simulation scheme
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2006.875786