Loading…

3-D Discrete Analytical Ridgelet Transform

In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2006-12, Vol.15 (12), p.3701-3714
Main Authors: Helbert, D., Carre, P., Andres, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53
cites cdi_FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53
container_end_page 3714
container_issue 12
container_start_page 3701
container_title IEEE transactions on image processing
container_volume 15
creator Helbert, D.
Carre, P.
Andres, E.
description In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient
doi_str_mv 10.1109/TIP.2006.881936
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_867339172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4011958</ieee_id><sourcerecordid>2350347421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agiq3VswdBFkFFYbbv5eXncWnVFhYUWc8hk010yuxOm8wK_e-b7SwtePCUkHzykrwvY68R5ohgT1eXP-YcQM2NQUvqCTtGK7ABEPxpnYPUjUZhj9iLUq4AUEhUz9kRapRkhThmn6k5n513JeQ4xtli6_vbsQu-n_3s1r9jH8fZKvttSUPevGTPku9LfHUYT9ivr19WZxfN8vu3y7PFsglC27FBH3Hd8rXkSQeyngxvY1JAhoJuW2PRGCtNqxN4Shi5DBC8spy4sSpJOmGfprp_fO-uc7fx-dYNvnMXi6XbrwEQIRnxF6v9ONnrPNzsYhndpv4l9r3fxmFXXL1KIEqEKj_8VyrDiYB0he_-gVfDLtfG1GpKE1nUvKLTCYU8lJJjengogtsn42oybp-Mm5KpJ94eyu7aTVw_-kMUFbw_AF9qAKm2PXTl0Rlupbp_35vJdTHGh20BiLWrdAe4H5og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867339172</pqid></control><display><type>article</type><title>3-D Discrete Analytical Ridgelet Transform</title><source>IEEE Xplore (Online service)</source><creator>Helbert, D. ; Carre, P. ; Andres, E.</creator><creatorcontrib>Helbert, D. ; Carre, P. ; Andres, E.</creatorcontrib><description>In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2006.881936</identifier><identifier>PMID: 17153944</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3-D Ridgelet transform ; Algorithms ; Applied sciences ; Color images ; Computer Science ; denoising ; Detection, estimation, filtering, equalization, prediction ; discrete analytical objects ; Discrete Fourier transforms ; Discrete transforms ; Exact sciences and technology ; Fourier analysis ; Fourier transforms ; Geometry ; Image analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image Processing ; Image reconstruction ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Iterative algorithms ; Iterative methods ; Mathematical analysis ; Miscellaneous ; Noise reduction ; Numerical Analysis, Computer-Assisted ; Reconstruction ; Redundancy ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal, noise ; Studies ; Telecommunications and information theory ; Transforms ; video ; Wavelet analysis</subject><ispartof>IEEE transactions on image processing, 2006-12, Vol.15 (12), p.3701-3714</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53</citedby><cites>FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53</cites><orcidid>0000-0002-8518-9193 ; 0000-0001-6518-1509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4011958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18295637$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17153944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00331384$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Helbert, D.</creatorcontrib><creatorcontrib>Carre, P.</creatorcontrib><creatorcontrib>Andres, E.</creatorcontrib><title>3-D Discrete Analytical Ridgelet Transform</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient</description><subject>3-D Ridgelet transform</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Color images</subject><subject>Computer Science</subject><subject>denoising</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>discrete analytical objects</subject><subject>Discrete Fourier transforms</subject><subject>Discrete transforms</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Geometry</subject><subject>Image analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Miscellaneous</subject><subject>Noise reduction</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Reconstruction</subject><subject>Redundancy</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><subject>video</subject><subject>Wavelet analysis</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUB_Agiq3VswdBFkFFYbbv5eXncWnVFhYUWc8hk010yuxOm8wK_e-b7SwtePCUkHzykrwvY68R5ohgT1eXP-YcQM2NQUvqCTtGK7ABEPxpnYPUjUZhj9iLUq4AUEhUz9kRapRkhThmn6k5n513JeQ4xtli6_vbsQu-n_3s1r9jH8fZKvttSUPevGTPku9LfHUYT9ivr19WZxfN8vu3y7PFsglC27FBH3Hd8rXkSQeyngxvY1JAhoJuW2PRGCtNqxN4Shi5DBC8spy4sSpJOmGfprp_fO-uc7fx-dYNvnMXi6XbrwEQIRnxF6v9ONnrPNzsYhndpv4l9r3fxmFXXL1KIEqEKj_8VyrDiYB0he_-gVfDLtfG1GpKE1nUvKLTCYU8lJJjengogtsn42oybp-Mm5KpJ94eyu7aTVw_-kMUFbw_AF9qAKm2PXTl0Rlupbp_35vJdTHGh20BiLWrdAe4H5og</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Helbert, D.</creator><creator>Carre, P.</creator><creator>Andres, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8518-9193</orcidid><orcidid>https://orcid.org/0000-0001-6518-1509</orcidid></search><sort><creationdate>20061201</creationdate><title>3-D Discrete Analytical Ridgelet Transform</title><author>Helbert, D. ; Carre, P. ; Andres, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>3-D Ridgelet transform</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Color images</topic><topic>Computer Science</topic><topic>denoising</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>discrete analytical objects</topic><topic>Discrete Fourier transforms</topic><topic>Discrete transforms</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Geometry</topic><topic>Image analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Miscellaneous</topic><topic>Noise reduction</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Reconstruction</topic><topic>Redundancy</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><topic>video</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helbert, D.</creatorcontrib><creatorcontrib>Carre, P.</creatorcontrib><creatorcontrib>Andres, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helbert, D.</au><au>Carre, P.</au><au>Andres, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Discrete Analytical Ridgelet Transform</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>15</volume><issue>12</issue><spage>3701</spage><epage>3714</epage><pages>3701-3714</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17153944</pmid><doi>10.1109/TIP.2006.881936</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8518-9193</orcidid><orcidid>https://orcid.org/0000-0001-6518-1509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2006-12, Vol.15 (12), p.3701-3714
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_867339172
source IEEE Xplore (Online service)
subjects 3-D Ridgelet transform
Algorithms
Applied sciences
Color images
Computer Science
denoising
Detection, estimation, filtering, equalization, prediction
discrete analytical objects
Discrete Fourier transforms
Discrete transforms
Exact sciences and technology
Fourier analysis
Fourier transforms
Geometry
Image analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image Processing
Image reconstruction
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Information, signal and communications theory
Iterative algorithms
Iterative methods
Mathematical analysis
Miscellaneous
Noise reduction
Numerical Analysis, Computer-Assisted
Reconstruction
Redundancy
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Signal, noise
Studies
Telecommunications and information theory
Transforms
video
Wavelet analysis
title 3-D Discrete Analytical Ridgelet Transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Discrete%20Analytical%20Ridgelet%20Transform&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Helbert,%20D.&rft.date=2006-12-01&rft.volume=15&rft.issue=12&rft.spage=3701&rft.epage=3714&rft.pages=3701-3714&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2006.881936&rft_dat=%3Cproquest_cross%3E2350347421%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867339172&rft_id=info:pmid/17153944&rft_ieee_id=4011958&rfr_iscdi=true