Loading…
3-D Discrete Analytical Ridgelet Transform
In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D t...
Saved in:
Published in: | IEEE transactions on image processing 2006-12, Vol.15 (12), p.3701-3714 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53 |
container_end_page | 3714 |
container_issue | 12 |
container_start_page | 3701 |
container_title | IEEE transactions on image processing |
container_volume | 15 |
creator | Helbert, D. Carre, P. Andres, E. |
description | In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient |
doi_str_mv | 10.1109/TIP.2006.881936 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_867339172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4011958</ieee_id><sourcerecordid>2350347421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agiq3VswdBFkFFYbbv5eXncWnVFhYUWc8hk010yuxOm8wK_e-b7SwtePCUkHzykrwvY68R5ohgT1eXP-YcQM2NQUvqCTtGK7ABEPxpnYPUjUZhj9iLUq4AUEhUz9kRapRkhThmn6k5n513JeQ4xtli6_vbsQu-n_3s1r9jH8fZKvttSUPevGTPku9LfHUYT9ivr19WZxfN8vu3y7PFsglC27FBH3Hd8rXkSQeyngxvY1JAhoJuW2PRGCtNqxN4Shi5DBC8spy4sSpJOmGfprp_fO-uc7fx-dYNvnMXi6XbrwEQIRnxF6v9ONnrPNzsYhndpv4l9r3fxmFXXL1KIEqEKj_8VyrDiYB0he_-gVfDLtfG1GpKE1nUvKLTCYU8lJJjengogtsn42oybp-Mm5KpJ94eyu7aTVw_-kMUFbw_AF9qAKm2PXTl0Rlupbp_35vJdTHGh20BiLWrdAe4H5og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867339172</pqid></control><display><type>article</type><title>3-D Discrete Analytical Ridgelet Transform</title><source>IEEE Xplore (Online service)</source><creator>Helbert, D. ; Carre, P. ; Andres, E.</creator><creatorcontrib>Helbert, D. ; Carre, P. ; Andres, E.</creatorcontrib><description>In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2006.881936</identifier><identifier>PMID: 17153944</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3-D Ridgelet transform ; Algorithms ; Applied sciences ; Color images ; Computer Science ; denoising ; Detection, estimation, filtering, equalization, prediction ; discrete analytical objects ; Discrete Fourier transforms ; Discrete transforms ; Exact sciences and technology ; Fourier analysis ; Fourier transforms ; Geometry ; Image analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image Processing ; Image reconstruction ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Iterative algorithms ; Iterative methods ; Mathematical analysis ; Miscellaneous ; Noise reduction ; Numerical Analysis, Computer-Assisted ; Reconstruction ; Redundancy ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal, noise ; Studies ; Telecommunications and information theory ; Transforms ; video ; Wavelet analysis</subject><ispartof>IEEE transactions on image processing, 2006-12, Vol.15 (12), p.3701-3714</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53</citedby><cites>FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53</cites><orcidid>0000-0002-8518-9193 ; 0000-0001-6518-1509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4011958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18295637$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17153944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00331384$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Helbert, D.</creatorcontrib><creatorcontrib>Carre, P.</creatorcontrib><creatorcontrib>Andres, E.</creatorcontrib><title>3-D Discrete Analytical Ridgelet Transform</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient</description><subject>3-D Ridgelet transform</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Color images</subject><subject>Computer Science</subject><subject>denoising</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>discrete analytical objects</subject><subject>Discrete Fourier transforms</subject><subject>Discrete transforms</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Geometry</subject><subject>Image analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Miscellaneous</subject><subject>Noise reduction</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Reconstruction</subject><subject>Redundancy</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><subject>video</subject><subject>Wavelet analysis</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUB_Agiq3VswdBFkFFYbbv5eXncWnVFhYUWc8hk010yuxOm8wK_e-b7SwtePCUkHzykrwvY68R5ohgT1eXP-YcQM2NQUvqCTtGK7ABEPxpnYPUjUZhj9iLUq4AUEhUz9kRapRkhThmn6k5n513JeQ4xtli6_vbsQu-n_3s1r9jH8fZKvttSUPevGTPku9LfHUYT9ivr19WZxfN8vu3y7PFsglC27FBH3Hd8rXkSQeyngxvY1JAhoJuW2PRGCtNqxN4Shi5DBC8spy4sSpJOmGfprp_fO-uc7fx-dYNvnMXi6XbrwEQIRnxF6v9ONnrPNzsYhndpv4l9r3fxmFXXL1KIEqEKj_8VyrDiYB0he_-gVfDLtfG1GpKE1nUvKLTCYU8lJJjengogtsn42oybp-Mm5KpJ94eyu7aTVw_-kMUFbw_AF9qAKm2PXTl0Rlupbp_35vJdTHGh20BiLWrdAe4H5og</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Helbert, D.</creator><creator>Carre, P.</creator><creator>Andres, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8518-9193</orcidid><orcidid>https://orcid.org/0000-0001-6518-1509</orcidid></search><sort><creationdate>20061201</creationdate><title>3-D Discrete Analytical Ridgelet Transform</title><author>Helbert, D. ; Carre, P. ; Andres, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>3-D Ridgelet transform</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Color images</topic><topic>Computer Science</topic><topic>denoising</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>discrete analytical objects</topic><topic>Discrete Fourier transforms</topic><topic>Discrete transforms</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Geometry</topic><topic>Image analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Miscellaneous</topic><topic>Noise reduction</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Reconstruction</topic><topic>Redundancy</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><topic>video</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helbert, D.</creatorcontrib><creatorcontrib>Carre, P.</creatorcontrib><creatorcontrib>Andres, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helbert, D.</au><au>Carre, P.</au><au>Andres, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Discrete Analytical Ridgelet Transform</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>15</volume><issue>12</issue><spage>3701</spage><epage>3714</epage><pages>3701-3714</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17153944</pmid><doi>10.1109/TIP.2006.881936</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8518-9193</orcidid><orcidid>https://orcid.org/0000-0001-6518-1509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2006-12, Vol.15 (12), p.3701-3714 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_867339172 |
source | IEEE Xplore (Online service) |
subjects | 3-D Ridgelet transform Algorithms Applied sciences Color images Computer Science denoising Detection, estimation, filtering, equalization, prediction discrete analytical objects Discrete Fourier transforms Discrete transforms Exact sciences and technology Fourier analysis Fourier transforms Geometry Image analysis Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image Processing Image reconstruction Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Information, signal and communications theory Iterative algorithms Iterative methods Mathematical analysis Miscellaneous Noise reduction Numerical Analysis, Computer-Assisted Reconstruction Redundancy Signal and communications theory Signal processing Signal Processing, Computer-Assisted Signal, noise Studies Telecommunications and information theory Transforms video Wavelet analysis |
title | 3-D Discrete Analytical Ridgelet Transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Discrete%20Analytical%20Ridgelet%20Transform&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Helbert,%20D.&rft.date=2006-12-01&rft.volume=15&rft.issue=12&rft.spage=3701&rft.epage=3714&rft.pages=3701-3714&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2006.881936&rft_dat=%3Cproquest_cross%3E2350347421%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-1ae1db2d52f7c39a382bef60383c7bb89188958b7f0a3f1e25c0ca69232896f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867339172&rft_id=info:pmid/17153944&rft_ieee_id=4011958&rfr_iscdi=true |