Loading…
A high-power RF switch IC using AlGaN/GaN HFETs with single-stage configuration
A high-power single-pole double throw (SPDT) switch IC using AlGaN/GaN heterojunction field-effect transistors (HFETs) is demonstrated for the first time. The reduction of on-resistance (R/sub on/) and off-capacitance (C/sub off/) for AlGaN/GaN HFETs enables the GaN-based switch IC that can be appli...
Saved in:
Published in: | IEEE transactions on electron devices 2005-08, Vol.52 (8), p.1893-1899 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A high-power single-pole double throw (SPDT) switch IC using AlGaN/GaN heterojunction field-effect transistors (HFETs) is demonstrated for the first time. The reduction of on-resistance (R/sub on/) and off-capacitance (C/sub off/) for AlGaN/GaN HFETs enables the GaN-based switch IC that can be applied for practical RF applications. A novel Si-doping technique is employed to reduce ohmic contact resistance, which successfully reduces the R/sub on/. The C/sub off/ of the HFETs on a sapphire substrate is found to be smaller than that on a SiC substrate, together with low cost fabrication. The GaN-based SPDT switch IC with single-stage configuration is designed by using a circuit simulator based on the extracted device parameters. The fabricated SPDT switch IC achieves insertion loss of 0.26 dB and isolation of 27 dB at 1 GHz, as well as an extremely high-power handling capability of 43 W. This value is 10 times higher than that of typical GaAs-based switch ICs. In addition, the switch IC exhibits low distortion characteristics, where the third-order intercept point of 41 dBm is achieved. The chip size is reduced to 40% as compared with conventional four stage GaAs-based switch ICs by using the single-stage circuit configuration. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2005.851835 |