Loading…

Automatic Road Environment Classification

The ongoing development autonomous vehicles and adaptive vehicle dynamics present in many modern vehicles has generated a need for road environment classification - i.e., the ability to determine the nature of the current road or terrain environment from an onboard vehicle sensor. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2011-06, Vol.12 (2), p.476-484
Main Authors: Tang, I, Breckon, T P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ongoing development autonomous vehicles and adaptive vehicle dynamics present in many modern vehicles has generated a need for road environment classification - i.e., the ability to determine the nature of the current road or terrain environment from an onboard vehicle sensor. In this paper, we investigate the use of a low-cost camera vision solution capable of urban, rural, or off-road classification based on the analysis of color and texture features extracted from a driver's perspective camera view. A feature set based on color and texture distributions is extracted from multiple regions of interest in this forward-facing camera view and combined with a trained classifier approach to resolve two road-type classification problems of varying difficulty - {off-road, on-road} environment determination and the additional multiclass road environment problem of {off-road, urban, major/trunk road and multilane motorway/carriageway}. Two illustrative classification approaches are investigated, and the results are reported over a series of real environment data. An optimal performance of ~90% correct classification is achieved for the {off-road, on-road} problem at a near real-time classification rate of 1 Hz.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2010.2095499