Loading…

Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components

Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some corr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2011-07, Vol.59 (7), p.3013-3024
Main Authors: Plourde, E, Champagne, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293
cites cdi_FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293
container_end_page 3024
container_issue 7
container_start_page 3013
container_title IEEE transactions on signal processing
container_volume 59
creator Plourde, E
Champagne, B
description Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some correlation is present in practice. In this paper, we investigate a multidimensional Bayesian STSA estimator that assumes correlated spectral components. Since the closed-form solution of this optimum estimator is not readily available, we alternatively derive closed-form expressions for an upper and a lower bound on the desired estimator. Using these bounds, we propose a new family of speech enhancement estimators that are characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to the upper bound. An appropriate estimator for the correlation matrix of the clean speech is further derived. Evaluation results from both objective and subjective speech quality measures show that at moderate to high SNR values, where spectral correlation of speech is most noticeable, the proposed estimators can achieve significant improvements over the traditional STSA and Wiener filter estimators.
doi_str_mv 10.1109/TSP.2011.2138697
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_871757734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5742773</ieee_id><sourcerecordid>2374564761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293</originalsourceid><addsrcrecordid>eNpdkMtLAzEQhxdRsFbvgpdFEE9b834cS6kPqCi0ouBhSdNZumW7qUn24H9vlpYePM3AfL-Z5Muya4xGGCP9sJi_jwjCeEQwVULLk2yANcMFYlKcph5xWnAlv86zixA2CGHGtBhk369dE-tVvYU21K41TT5fzMf5NMR6a6LzIa-cz-c7ALvOp-3atBYSG_PPOq7zifMeGhNh1SM2-pSfuO3OtQkJl9lZZZoAV4c6zD4ep4vJczF7e3qZjGeFpZzEQkggGmtLLeEcV0wJSsBgjSmzABK4qSyWUq6qJbOCcEHNUiowSjKzUkTTYXa_37vz7qeDEMttHSw0jWnBdaFUSjMkNGOJvP1Hblzn068TJLHkUtIeQnvIeheCh6rc-STD_5YYlb3rMrkue9flwXWK3B32mmBNU_mkqQ7HHGFEcSb6l97suRoAjmMuGUmX6R-4pYeR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871757734</pqid></control><display><type>article</type><title>Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Plourde, E ; Champagne, B</creator><creatorcontrib>Plourde, E ; Champagne, B</creatorcontrib><description>Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some correlation is present in practice. In this paper, we investigate a multidimensional Bayesian STSA estimator that assumes correlated spectral components. Since the closed-form solution of this optimum estimator is not readily available, we alternatively derive closed-form expressions for an upper and a lower bound on the desired estimator. Using these bounds, we propose a new family of speech enhancement estimators that are characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to the upper bound. An appropriate estimator for the correlation matrix of the clean speech is further derived. Evaluation results from both objective and subjective speech quality measures show that at moderate to high SNR values, where spectral correlation of speech is most noticeable, the proposed estimators can achieve significant improvements over the traditional STSA and Wiener filter estimators.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2138697</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Bayesian analysis ; Bayesian estimators ; Bayesian methods ; correlated spectral components ; Correlation ; Cost function ; Detection, estimation, filtering, equalization, prediction ; Estimation ; Estimators ; Exact sciences and technology ; Exact solutions ; Information, signal and communications theory ; Lower bounds ; Mathematical analysis ; Noise measurement ; noise reduction ; short-time spectral amplitude ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Spectra ; Speech ; Speech enhancement ; Speech processing ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3013-3024</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293</citedby><cites>FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5742773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24285469$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Plourde, E</creatorcontrib><creatorcontrib>Champagne, B</creatorcontrib><title>Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some correlation is present in practice. In this paper, we investigate a multidimensional Bayesian STSA estimator that assumes correlated spectral components. Since the closed-form solution of this optimum estimator is not readily available, we alternatively derive closed-form expressions for an upper and a lower bound on the desired estimator. Using these bounds, we propose a new family of speech enhancement estimators that are characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to the upper bound. An appropriate estimator for the correlation matrix of the clean speech is further derived. Evaluation results from both objective and subjective speech quality measures show that at moderate to high SNR values, where spectral correlation of speech is most noticeable, the proposed estimators can achieve significant improvements over the traditional STSA and Wiener filter estimators.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bayesian analysis</subject><subject>Bayesian estimators</subject><subject>Bayesian methods</subject><subject>correlated spectral components</subject><subject>Correlation</subject><subject>Cost function</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Information, signal and communications theory</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Noise measurement</subject><subject>noise reduction</subject><subject>short-time spectral amplitude</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>Speech</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLAzEQhxdRsFbvgpdFEE9b834cS6kPqCi0ouBhSdNZumW7qUn24H9vlpYePM3AfL-Z5Muya4xGGCP9sJi_jwjCeEQwVULLk2yANcMFYlKcph5xWnAlv86zixA2CGHGtBhk369dE-tVvYU21K41TT5fzMf5NMR6a6LzIa-cz-c7ALvOp-3atBYSG_PPOq7zifMeGhNh1SM2-pSfuO3OtQkJl9lZZZoAV4c6zD4ep4vJczF7e3qZjGeFpZzEQkggGmtLLeEcV0wJSsBgjSmzABK4qSyWUq6qJbOCcEHNUiowSjKzUkTTYXa_37vz7qeDEMttHSw0jWnBdaFUSjMkNGOJvP1Hblzn068TJLHkUtIeQnvIeheCh6rc-STD_5YYlb3rMrkue9flwXWK3B32mmBNU_mkqQ7HHGFEcSb6l97suRoAjmMuGUmX6R-4pYeR</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Plourde, E</creator><creator>Champagne, B</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components</title><author>Plourde, E ; Champagne, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bayesian analysis</topic><topic>Bayesian estimators</topic><topic>Bayesian methods</topic><topic>correlated spectral components</topic><topic>Correlation</topic><topic>Cost function</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Information, signal and communications theory</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Noise measurement</topic><topic>noise reduction</topic><topic>short-time spectral amplitude</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>Speech</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plourde, E</creatorcontrib><creatorcontrib>Champagne, B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plourde, E</au><au>Champagne, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>3013</spage><epage>3024</epage><pages>3013-3024</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some correlation is present in practice. In this paper, we investigate a multidimensional Bayesian STSA estimator that assumes correlated spectral components. Since the closed-form solution of this optimum estimator is not readily available, we alternatively derive closed-form expressions for an upper and a lower bound on the desired estimator. Using these bounds, we propose a new family of speech enhancement estimators that are characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to the upper bound. An appropriate estimator for the correlation matrix of the clean speech is further derived. Evaluation results from both objective and subjective speech quality measures show that at moderate to high SNR values, where spectral correlation of speech is most noticeable, the proposed estimators can achieve significant improvements over the traditional STSA and Wiener filter estimators.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2138697</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3013-3024
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_871757734
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Bayesian analysis
Bayesian estimators
Bayesian methods
correlated spectral components
Correlation
Cost function
Detection, estimation, filtering, equalization, prediction
Estimation
Estimators
Exact sciences and technology
Exact solutions
Information, signal and communications theory
Lower bounds
Mathematical analysis
Noise measurement
noise reduction
short-time spectral amplitude
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Spectra
Speech
Speech enhancement
Speech processing
Studies
Telecommunications and information theory
title Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20STSA%20Estimators%20for%20Speech%20Enhancement%20With%20Correlated%20Spectral%20Components&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Plourde,%20E&rft.date=2011-07-01&rft.volume=59&rft.issue=7&rft.spage=3013&rft.epage=3024&rft.pages=3013-3024&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2138697&rft_dat=%3Cproquest_cross%3E2374564761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=871757734&rft_id=info:pmid/&rft_ieee_id=5742773&rfr_iscdi=true