Loading…
Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components
Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some corr...
Saved in:
Published in: | IEEE transactions on signal processing 2011-07, Vol.59 (7), p.3013-3024 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293 |
container_end_page | 3024 |
container_issue | 7 |
container_start_page | 3013 |
container_title | IEEE transactions on signal processing |
container_volume | 59 |
creator | Plourde, E Champagne, B |
description | Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some correlation is present in practice. In this paper, we investigate a multidimensional Bayesian STSA estimator that assumes correlated spectral components. Since the closed-form solution of this optimum estimator is not readily available, we alternatively derive closed-form expressions for an upper and a lower bound on the desired estimator. Using these bounds, we propose a new family of speech enhancement estimators that are characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to the upper bound. An appropriate estimator for the correlation matrix of the clean speech is further derived. Evaluation results from both objective and subjective speech quality measures show that at moderate to high SNR values, where spectral correlation of speech is most noticeable, the proposed estimators can achieve significant improvements over the traditional STSA and Wiener filter estimators. |
doi_str_mv | 10.1109/TSP.2011.2138697 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_871757734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5742773</ieee_id><sourcerecordid>2374564761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293</originalsourceid><addsrcrecordid>eNpdkMtLAzEQhxdRsFbvgpdFEE9b834cS6kPqCi0ouBhSdNZumW7qUn24H9vlpYePM3AfL-Z5Muya4xGGCP9sJi_jwjCeEQwVULLk2yANcMFYlKcph5xWnAlv86zixA2CGHGtBhk369dE-tVvYU21K41TT5fzMf5NMR6a6LzIa-cz-c7ALvOp-3atBYSG_PPOq7zifMeGhNh1SM2-pSfuO3OtQkJl9lZZZoAV4c6zD4ep4vJczF7e3qZjGeFpZzEQkggGmtLLeEcV0wJSsBgjSmzABK4qSyWUq6qJbOCcEHNUiowSjKzUkTTYXa_37vz7qeDEMttHSw0jWnBdaFUSjMkNGOJvP1Hblzn068TJLHkUtIeQnvIeheCh6rc-STD_5YYlb3rMrkue9flwXWK3B32mmBNU_mkqQ7HHGFEcSb6l97suRoAjmMuGUmX6R-4pYeR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871757734</pqid></control><display><type>article</type><title>Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Plourde, E ; Champagne, B</creator><creatorcontrib>Plourde, E ; Champagne, B</creatorcontrib><description>Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some correlation is present in practice. In this paper, we investigate a multidimensional Bayesian STSA estimator that assumes correlated spectral components. Since the closed-form solution of this optimum estimator is not readily available, we alternatively derive closed-form expressions for an upper and a lower bound on the desired estimator. Using these bounds, we propose a new family of speech enhancement estimators that are characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to the upper bound. An appropriate estimator for the correlation matrix of the clean speech is further derived. Evaluation results from both objective and subjective speech quality measures show that at moderate to high SNR values, where spectral correlation of speech is most noticeable, the proposed estimators can achieve significant improvements over the traditional STSA and Wiener filter estimators.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2138697</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Bayesian analysis ; Bayesian estimators ; Bayesian methods ; correlated spectral components ; Correlation ; Cost function ; Detection, estimation, filtering, equalization, prediction ; Estimation ; Estimators ; Exact sciences and technology ; Exact solutions ; Information, signal and communications theory ; Lower bounds ; Mathematical analysis ; Noise measurement ; noise reduction ; short-time spectral amplitude ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Spectra ; Speech ; Speech enhancement ; Speech processing ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3013-3024</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293</citedby><cites>FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5742773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24285469$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Plourde, E</creatorcontrib><creatorcontrib>Champagne, B</creatorcontrib><title>Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some correlation is present in practice. In this paper, we investigate a multidimensional Bayesian STSA estimator that assumes correlated spectral components. Since the closed-form solution of this optimum estimator is not readily available, we alternatively derive closed-form expressions for an upper and a lower bound on the desired estimator. Using these bounds, we propose a new family of speech enhancement estimators that are characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to the upper bound. An appropriate estimator for the correlation matrix of the clean speech is further derived. Evaluation results from both objective and subjective speech quality measures show that at moderate to high SNR values, where spectral correlation of speech is most noticeable, the proposed estimators can achieve significant improvements over the traditional STSA and Wiener filter estimators.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bayesian analysis</subject><subject>Bayesian estimators</subject><subject>Bayesian methods</subject><subject>correlated spectral components</subject><subject>Correlation</subject><subject>Cost function</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Information, signal and communications theory</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Noise measurement</subject><subject>noise reduction</subject><subject>short-time spectral amplitude</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>Speech</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLAzEQhxdRsFbvgpdFEE9b834cS6kPqCi0ouBhSdNZumW7qUn24H9vlpYePM3AfL-Z5Muya4xGGCP9sJi_jwjCeEQwVULLk2yANcMFYlKcph5xWnAlv86zixA2CGHGtBhk369dE-tVvYU21K41TT5fzMf5NMR6a6LzIa-cz-c7ALvOp-3atBYSG_PPOq7zifMeGhNh1SM2-pSfuO3OtQkJl9lZZZoAV4c6zD4ep4vJczF7e3qZjGeFpZzEQkggGmtLLeEcV0wJSsBgjSmzABK4qSyWUq6qJbOCcEHNUiowSjKzUkTTYXa_37vz7qeDEMttHSw0jWnBdaFUSjMkNGOJvP1Hblzn068TJLHkUtIeQnvIeheCh6rc-STD_5YYlb3rMrkue9flwXWK3B32mmBNU_mkqQ7HHGFEcSb6l97suRoAjmMuGUmX6R-4pYeR</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Plourde, E</creator><creator>Champagne, B</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components</title><author>Plourde, E ; Champagne, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bayesian analysis</topic><topic>Bayesian estimators</topic><topic>Bayesian methods</topic><topic>correlated spectral components</topic><topic>Correlation</topic><topic>Cost function</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Information, signal and communications theory</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Noise measurement</topic><topic>noise reduction</topic><topic>short-time spectral amplitude</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>Speech</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plourde, E</creatorcontrib><creatorcontrib>Champagne, B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plourde, E</au><au>Champagne, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>3013</spage><epage>3024</epage><pages>3013-3024</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Speech enhancement algorithms are used to remove background noise in a speech signal. In Bayesian short-time spectral amplitude (STSA) estimation for single-channel speech enhancement, the spectral components are traditionally assumed uncorrelated. However, this assumption is inexact since some correlation is present in practice. In this paper, we investigate a multidimensional Bayesian STSA estimator that assumes correlated spectral components. Since the closed-form solution of this optimum estimator is not readily available, we alternatively derive closed-form expressions for an upper and a lower bound on the desired estimator. Using these bounds, we propose a new family of speech enhancement estimators that are characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to the upper bound. An appropriate estimator for the correlation matrix of the clean speech is further derived. Evaluation results from both objective and subjective speech quality measures show that at moderate to high SNR values, where spectral correlation of speech is most noticeable, the proposed estimators can achieve significant improvements over the traditional STSA and Wiener filter estimators.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2138697</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3013-3024 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_871757734 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Bayesian analysis Bayesian estimators Bayesian methods correlated spectral components Correlation Cost function Detection, estimation, filtering, equalization, prediction Estimation Estimators Exact sciences and technology Exact solutions Information, signal and communications theory Lower bounds Mathematical analysis Noise measurement noise reduction short-time spectral amplitude Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Spectra Speech Speech enhancement Speech processing Studies Telecommunications and information theory |
title | Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20STSA%20Estimators%20for%20Speech%20Enhancement%20With%20Correlated%20Spectral%20Components&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Plourde,%20E&rft.date=2011-07-01&rft.volume=59&rft.issue=7&rft.spage=3013&rft.epage=3024&rft.pages=3013-3024&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2138697&rft_dat=%3Cproquest_cross%3E2374564761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-67e2919c3c2551f48632ea19134cee7e5afc1777dfb4c62563ab78ea874ad8293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=871757734&rft_id=info:pmid/&rft_ieee_id=5742773&rfr_iscdi=true |