Loading…

IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization

We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a sin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2011-07, Vol.59 (7), p.3251-3261
Main Authors: Xue, Ming, Xu, Luzhou, Li, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113
cites cdi_FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113
container_end_page 3261
container_issue 7
container_start_page 3251
container_title IEEE transactions on signal processing
container_volume 59
creator Xue, Ming
Xu, Luzhou
Li, Jian
description We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a single data sequence or snapshot. Compared to the conventional periodogram, IAA can be used to significantly increase the resolution and suppress the sidelobe levels. However, due to its high computational complexity, IAA can only be used in applications involving small-sized data. We present herein novel fast implementations of IAA using the Gohberg-Semencul (G-S)-type factorization of the IAA covariance matrices. By exploiting the Toeplitz structure of the said matrices, we are able to reduce the computational cost by at least two orders of magnitudes even for moderate data sizes.
doi_str_mv 10.1109/TSP.2011.2131136
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_871757749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5737801</ieee_id><sourcerecordid>2374564641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113</originalsourceid><addsrcrecordid>eNpdkMFKAzEQQIMoWKt3wcsiiKetySbZJN5KaWuhoNAWvIU0Ju2W7e6aZA_69Wbb0oOnGWbeDDMPgHsEBwhB8bJcfAwyiNAgQxghnF-AHhIEpZCw_DLmkOKUcvZ5DW6830GICBF5D6xmw2GyaIwOTpXJ2Idir0JRV6_JRPmQzPZNafamCodisvJFtUnC1iTTers2bpMuuq5uy4jrULvi9wDegiurSm_uTrEPVpPxcvSWzt-ns9FwnmpMs5BiyhXW1EIMUY519iWEynODISaWrQXVhBElFKbUGIWs1nQtGLc5wUxbG7_sg-fj3sbV363xQe4Lr01ZqsrUrZecCwIznIlIPv4jd3Xrqnic5AwxyhjpIHiEtKu9d8bKxkUf7kciKDvLMlqWnWV5shxHnk57ldeqtE5VuvDnuYxknBLOI_dw5ApjzLlNGWYcIvwHCbqEpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871757749</pqid></control><display><type>article</type><title>IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization</title><source>IEEE Xplore (Online service)</source><creator>Xue, Ming ; Xu, Luzhou ; Li, Jian</creator><creatorcontrib>Xue, Ming ; Xu, Luzhou ; Li, Jian</creatorcontrib><description>We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a single data sequence or snapshot. Compared to the conventional periodogram, IAA can be used to significantly increase the resolution and suppress the sidelobe levels. However, due to its high computational complexity, IAA can only be used in applications involving small-sized data. We present herein novel fast implementations of IAA using the Gohberg-Semencul (G-S)-type factorization of the IAA covariance matrices. By exploiting the Toeplitz structure of the said matrices, we are able to reduce the computational cost by at least two orders of magnitudes even for moderate data sizes.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2131136</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computational efficiency ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Estimation ; Exact sciences and technology ; Factorization ; Generators ; Gohberg-Semencul factorization ; Information, signal and communications theory ; iterative adaptive approach (IAA) ; Least squares method ; Mathematical analysis ; Matrices ; Matrix decomposition ; Matrix methods ; Noise ; Polynomials ; Sampled data ; Signal and communications theory ; Signal representation. Spectral analysis ; Signal, noise ; Spatial resolution ; Spectra ; spectral estimation ; Telecommunications and information theory ; Toeplitz matrices</subject><ispartof>IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3251-3261</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113</citedby><cites>FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5737801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24285488$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Xu, Luzhou</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><title>IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a single data sequence or snapshot. Compared to the conventional periodogram, IAA can be used to significantly increase the resolution and suppress the sidelobe levels. However, due to its high computational complexity, IAA can only be used in applications involving small-sized data. We present herein novel fast implementations of IAA using the Gohberg-Semencul (G-S)-type factorization of the IAA covariance matrices. By exploiting the Toeplitz structure of the said matrices, we are able to reduce the computational cost by at least two orders of magnitudes even for moderate data sizes.</description><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Generators</subject><subject>Gohberg-Semencul factorization</subject><subject>Information, signal and communications theory</subject><subject>iterative adaptive approach (IAA)</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix decomposition</subject><subject>Matrix methods</subject><subject>Noise</subject><subject>Polynomials</subject><subject>Sampled data</subject><subject>Signal and communications theory</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spatial resolution</subject><subject>Spectra</subject><subject>spectral estimation</subject><subject>Telecommunications and information theory</subject><subject>Toeplitz matrices</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKAzEQQIMoWKt3wcsiiKetySbZJN5KaWuhoNAWvIU0Ju2W7e6aZA_69Wbb0oOnGWbeDDMPgHsEBwhB8bJcfAwyiNAgQxghnF-AHhIEpZCw_DLmkOKUcvZ5DW6830GICBF5D6xmw2GyaIwOTpXJ2Idir0JRV6_JRPmQzPZNafamCodisvJFtUnC1iTTers2bpMuuq5uy4jrULvi9wDegiurSm_uTrEPVpPxcvSWzt-ns9FwnmpMs5BiyhXW1EIMUY519iWEynODISaWrQXVhBElFKbUGIWs1nQtGLc5wUxbG7_sg-fj3sbV363xQe4Lr01ZqsrUrZecCwIznIlIPv4jd3Xrqnic5AwxyhjpIHiEtKu9d8bKxkUf7kciKDvLMlqWnWV5shxHnk57ldeqtE5VuvDnuYxknBLOI_dw5ApjzLlNGWYcIvwHCbqEpQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Xue, Ming</creator><creator>Xu, Luzhou</creator><creator>Li, Jian</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization</title><author>Xue, Ming ; Xu, Luzhou ; Li, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Generators</topic><topic>Gohberg-Semencul factorization</topic><topic>Information, signal and communications theory</topic><topic>iterative adaptive approach (IAA)</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix decomposition</topic><topic>Matrix methods</topic><topic>Noise</topic><topic>Polynomials</topic><topic>Sampled data</topic><topic>Signal and communications theory</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spatial resolution</topic><topic>Spectra</topic><topic>spectral estimation</topic><topic>Telecommunications and information theory</topic><topic>Toeplitz matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Xu, Luzhou</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Ming</au><au>Xu, Luzhou</au><au>Li, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>3251</spage><epage>3261</epage><pages>3251-3261</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a single data sequence or snapshot. Compared to the conventional periodogram, IAA can be used to significantly increase the resolution and suppress the sidelobe levels. However, due to its high computational complexity, IAA can only be used in applications involving small-sized data. We present herein novel fast implementations of IAA using the Gohberg-Semencul (G-S)-type factorization of the IAA covariance matrices. By exploiting the Toeplitz structure of the said matrices, we are able to reduce the computational cost by at least two orders of magnitudes even for moderate data sizes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2131136</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3251-3261
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_871757749
source IEEE Xplore (Online service)
subjects Applied sciences
Computational efficiency
Covariance matrix
Detection, estimation, filtering, equalization, prediction
Estimation
Exact sciences and technology
Factorization
Generators
Gohberg-Semencul factorization
Information, signal and communications theory
iterative adaptive approach (IAA)
Least squares method
Mathematical analysis
Matrices
Matrix decomposition
Matrix methods
Noise
Polynomials
Sampled data
Signal and communications theory
Signal representation. Spectral analysis
Signal, noise
Spatial resolution
Spectra
spectral estimation
Telecommunications and information theory
Toeplitz matrices
title IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IAA%20Spectral%20Estimation:%20Fast%20Implementation%20Using%20the%20Gohberg-Semencul%20Factorization&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Xue,%20Ming&rft.date=2011-07-01&rft.volume=59&rft.issue=7&rft.spage=3251&rft.epage=3261&rft.pages=3251-3261&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2131136&rft_dat=%3Cproquest_ieee_%3E2374564641%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=871757749&rft_id=info:pmid/&rft_ieee_id=5737801&rfr_iscdi=true