Loading…
IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization
We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a sin...
Saved in:
Published in: | IEEE transactions on signal processing 2011-07, Vol.59 (7), p.3251-3261 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113 |
container_end_page | 3261 |
container_issue | 7 |
container_start_page | 3251 |
container_title | IEEE transactions on signal processing |
container_volume | 59 |
creator | Xue, Ming Xu, Luzhou Li, Jian |
description | We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a single data sequence or snapshot. Compared to the conventional periodogram, IAA can be used to significantly increase the resolution and suppress the sidelobe levels. However, due to its high computational complexity, IAA can only be used in applications involving small-sized data. We present herein novel fast implementations of IAA using the Gohberg-Semencul (G-S)-type factorization of the IAA covariance matrices. By exploiting the Toeplitz structure of the said matrices, we are able to reduce the computational cost by at least two orders of magnitudes even for moderate data sizes. |
doi_str_mv | 10.1109/TSP.2011.2131136 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_871757749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5737801</ieee_id><sourcerecordid>2374564641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113</originalsourceid><addsrcrecordid>eNpdkMFKAzEQQIMoWKt3wcsiiKetySbZJN5KaWuhoNAWvIU0Ju2W7e6aZA_69Wbb0oOnGWbeDDMPgHsEBwhB8bJcfAwyiNAgQxghnF-AHhIEpZCw_DLmkOKUcvZ5DW6830GICBF5D6xmw2GyaIwOTpXJ2Idir0JRV6_JRPmQzPZNafamCodisvJFtUnC1iTTers2bpMuuq5uy4jrULvi9wDegiurSm_uTrEPVpPxcvSWzt-ns9FwnmpMs5BiyhXW1EIMUY519iWEynODISaWrQXVhBElFKbUGIWs1nQtGLc5wUxbG7_sg-fj3sbV363xQe4Lr01ZqsrUrZecCwIznIlIPv4jd3Xrqnic5AwxyhjpIHiEtKu9d8bKxkUf7kciKDvLMlqWnWV5shxHnk57ldeqtE5VuvDnuYxknBLOI_dw5ApjzLlNGWYcIvwHCbqEpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871757749</pqid></control><display><type>article</type><title>IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization</title><source>IEEE Xplore (Online service)</source><creator>Xue, Ming ; Xu, Luzhou ; Li, Jian</creator><creatorcontrib>Xue, Ming ; Xu, Luzhou ; Li, Jian</creatorcontrib><description>We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a single data sequence or snapshot. Compared to the conventional periodogram, IAA can be used to significantly increase the resolution and suppress the sidelobe levels. However, due to its high computational complexity, IAA can only be used in applications involving small-sized data. We present herein novel fast implementations of IAA using the Gohberg-Semencul (G-S)-type factorization of the IAA covariance matrices. By exploiting the Toeplitz structure of the said matrices, we are able to reduce the computational cost by at least two orders of magnitudes even for moderate data sizes.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2131136</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computational efficiency ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Estimation ; Exact sciences and technology ; Factorization ; Generators ; Gohberg-Semencul factorization ; Information, signal and communications theory ; iterative adaptive approach (IAA) ; Least squares method ; Mathematical analysis ; Matrices ; Matrix decomposition ; Matrix methods ; Noise ; Polynomials ; Sampled data ; Signal and communications theory ; Signal representation. Spectral analysis ; Signal, noise ; Spatial resolution ; Spectra ; spectral estimation ; Telecommunications and information theory ; Toeplitz matrices</subject><ispartof>IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3251-3261</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113</citedby><cites>FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5737801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24285488$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Xu, Luzhou</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><title>IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a single data sequence or snapshot. Compared to the conventional periodogram, IAA can be used to significantly increase the resolution and suppress the sidelobe levels. However, due to its high computational complexity, IAA can only be used in applications involving small-sized data. We present herein novel fast implementations of IAA using the Gohberg-Semencul (G-S)-type factorization of the IAA covariance matrices. By exploiting the Toeplitz structure of the said matrices, we are able to reduce the computational cost by at least two orders of magnitudes even for moderate data sizes.</description><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Generators</subject><subject>Gohberg-Semencul factorization</subject><subject>Information, signal and communications theory</subject><subject>iterative adaptive approach (IAA)</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix decomposition</subject><subject>Matrix methods</subject><subject>Noise</subject><subject>Polynomials</subject><subject>Sampled data</subject><subject>Signal and communications theory</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spatial resolution</subject><subject>Spectra</subject><subject>spectral estimation</subject><subject>Telecommunications and information theory</subject><subject>Toeplitz matrices</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKAzEQQIMoWKt3wcsiiKetySbZJN5KaWuhoNAWvIU0Ju2W7e6aZA_69Wbb0oOnGWbeDDMPgHsEBwhB8bJcfAwyiNAgQxghnF-AHhIEpZCw_DLmkOKUcvZ5DW6830GICBF5D6xmw2GyaIwOTpXJ2Idir0JRV6_JRPmQzPZNafamCodisvJFtUnC1iTTers2bpMuuq5uy4jrULvi9wDegiurSm_uTrEPVpPxcvSWzt-ns9FwnmpMs5BiyhXW1EIMUY519iWEynODISaWrQXVhBElFKbUGIWs1nQtGLc5wUxbG7_sg-fj3sbV363xQe4Lr01ZqsrUrZecCwIznIlIPv4jd3Xrqnic5AwxyhjpIHiEtKu9d8bKxkUf7kciKDvLMlqWnWV5shxHnk57ldeqtE5VuvDnuYxknBLOI_dw5ApjzLlNGWYcIvwHCbqEpQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Xue, Ming</creator><creator>Xu, Luzhou</creator><creator>Li, Jian</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization</title><author>Xue, Ming ; Xu, Luzhou ; Li, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Generators</topic><topic>Gohberg-Semencul factorization</topic><topic>Information, signal and communications theory</topic><topic>iterative adaptive approach (IAA)</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix decomposition</topic><topic>Matrix methods</topic><topic>Noise</topic><topic>Polynomials</topic><topic>Sampled data</topic><topic>Signal and communications theory</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spatial resolution</topic><topic>Spectra</topic><topic>spectral estimation</topic><topic>Telecommunications and information theory</topic><topic>Toeplitz matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Xu, Luzhou</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Ming</au><au>Xu, Luzhou</au><au>Li, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>3251</spage><epage>3261</epage><pages>3251-3261</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a single data sequence or snapshot. Compared to the conventional periodogram, IAA can be used to significantly increase the resolution and suppress the sidelobe levels. However, due to its high computational complexity, IAA can only be used in applications involving small-sized data. We present herein novel fast implementations of IAA using the Gohberg-Semencul (G-S)-type factorization of the IAA covariance matrices. By exploiting the Toeplitz structure of the said matrices, we are able to reduce the computational cost by at least two orders of magnitudes even for moderate data sizes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2131136</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2011-07, Vol.59 (7), p.3251-3261 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_871757749 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Computational efficiency Covariance matrix Detection, estimation, filtering, equalization, prediction Estimation Exact sciences and technology Factorization Generators Gohberg-Semencul factorization Information, signal and communications theory iterative adaptive approach (IAA) Least squares method Mathematical analysis Matrices Matrix decomposition Matrix methods Noise Polynomials Sampled data Signal and communications theory Signal representation. Spectral analysis Signal, noise Spatial resolution Spectra spectral estimation Telecommunications and information theory Toeplitz matrices |
title | IAA Spectral Estimation: Fast Implementation Using the Gohberg-Semencul Factorization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IAA%20Spectral%20Estimation:%20Fast%20Implementation%20Using%20the%20Gohberg-Semencul%20Factorization&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Xue,%20Ming&rft.date=2011-07-01&rft.volume=59&rft.issue=7&rft.spage=3251&rft.epage=3261&rft.pages=3251-3261&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2131136&rft_dat=%3Cproquest_ieee_%3E2374564641%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-358a3c5f030163c2d99a66e3034f7b95c474a9a355eea1fcc5b978f6437cff113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=871757749&rft_id=info:pmid/&rft_ieee_id=5737801&rfr_iscdi=true |