Loading…
Joint modified block replacement and production/inventory control policy for a failure-prone manufacturing cell
This paper considers a joint preventive maintenance (PM) and production/inventory control policy of an unreliable single machine, mono-product manufacturing cell with stochastic non-negligible corrective and preventive delays. The production/inventory control policy, which is based on the hedging po...
Saved in:
Published in: | Omega (Oxford) 2011-12, Vol.39 (6), p.642-654 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper considers a joint preventive maintenance (PM) and production/inventory control policy of an unreliable single machine, mono-product manufacturing cell with stochastic non-negligible corrective and preventive delays. The production/inventory control policy, which is based on the hedging point policy (HPP), consists in building and maintaining a safety stock of finished products in order to respond to demand and to avoid shortages during maintenance actions. Without considering the impact of preventive and corrective actions on the overall performance of the production system, most authors working in the reliability and maintainability domains confirm that the age-based preventive maintenance policy (ARP) outperforms the classical block-replacement policy (BRP). In order to reduce wastage incurred by the classical BRP, we consider a modified block replacement policy (MBRP), which consists in canceling a preventive maintenance action if the time elapsed since the last maintenance action exceeds a specified time threshold. The main objective of this paper is to determine the joint optimal policy that minimizes the overall cost, which is composed of corrective and preventive maintenance costs as well as inventory holding and backlog costs. A simulation model mimicking the dynamic and stochastic behavior of the manufacturing cell, based on more realistic considerations of the real behavior of industrial manufacturing cells, is proposed. Based on simulation results, the joint optimal MBRP/HPP parameters are obtained through a numerical approach that combines design of experiment, analysis of variance and response surface methodologies. The joint optimal MBRP/HPP policy is compared to classical joint ARP/HPP and BRP/HPP optimal policies, and the results show that the proposed MBRP/HPP outperforms the latter. Sensitivity analyses are also carried out in order to confirm the superiority of the proposed MBRP/HPP, and it is observed that for practitioners, the proposed joint MBRP/HPP offers not only cost savings, but is also easy to manage, as compared to the ARP/HPP policy.
► A Joint maintenance and production/inventory control policy for unreliable machines. ► A policy combining a Modified Block Replacement Policy and a Hedging Point Policy. ► Comparison between age-based and periodic maintenance policies using simulation. ► Modified Block Replacement Policy could outperform age replacement one. |
---|---|
ISSN: | 0305-0483 1873-5274 |
DOI: | 10.1016/j.omega.2011.01.006 |