Loading…

Differential antioxidative responses of indica rice cultivars to drought stress

The present study investigated the linkages between drought stress, oxidative damages and variations in antioxidants in the three rice varieties IR-29 (salt-sensitive), Pokkali (salt-tolerant) and aromatic Pusa Basmati (PB), to elucidate the antioxidative protective mechanism governing differential...

Full description

Saved in:
Bibliographic Details
Published in:Plant growth regulation 2010-01, Vol.60 (1), p.51-59
Main Authors: Basu, Supratim, Roychoudhury, Aryadeep, Saha, Progya Paromita, Sengupta, Dibyendu N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study investigated the linkages between drought stress, oxidative damages and variations in antioxidants in the three rice varieties IR-29 (salt-sensitive), Pokkali (salt-tolerant) and aromatic Pusa Basmati (PB), to elucidate the antioxidative protective mechanism governing differential drought tolerance. Water deficit, induced by 20% (w/v) polyethylene glycol (PEG-6000), provoked severe damages in IR-29 and PB in the form of huge chlorophyll degradation and elevated H₂O₂, malondialdehyde and lipoxygenase (LOX, EC 1.13.11.12) levels as compared to Pokkali. The protein oxidation was more conspicuous in IR-29. Increment in antioxidants, particularly flavonoids and phenolics was several folds higher over control in Pokkali, while much lesser in IR-29 and PB. The activity of catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC 1.15.1.1) were decreased in IR-29 and PB, but unaltered in Pokkali. However, marked drought-induced increase in guaiacol peroxidase (GPX, EC 1.11.1.7) activity was noted in both IR-29 and PB. Induction in radical scavenging activity, being the maximum in IR-29, and increased reducing power ability in all the cultivars, accompanied with drought stress, were observed as a defense mechanism. The novelty of our work is that it showed the aromatic rice PB behaving more closely to IR-29 in greater susceptibility to dehydration stress, while the salt-tolerant Pokkali also showed effective drought tolerance properties.
ISSN:0167-6903
1573-5087
DOI:10.1007/s10725-009-9418-4