Loading…

Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation

This letter proposes a multioutput support vector regression (M-SVR) method for the simultaneous estimation of different biophysical parameters from remote sensing images. General retrieval problems require multioutput (and potentially nonlinear) regression methods. M-SVR extends the single-output S...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2011-07, Vol.8 (4), p.804-808
Main Authors: Tuia, D., Verrelst, J., Alonso, L., Perez-Cruz, F., Camps-Valls, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This letter proposes a multioutput support vector regression (M-SVR) method for the simultaneous estimation of different biophysical parameters from remote sensing images. General retrieval problems require multioutput (and potentially nonlinear) regression methods. M-SVR extends the single-output SVR to multiple outputs maintaining the advantages of a sparse and compact solution by using an ε-insensitive cost function. The proposed M-SVR is evaluated in the estimation of chlorophyll content, leaf area index and fractional vegetation cover from a hyperspectral compact high-resolution imaging spectrometer images. The achieved improvement with respect to the single-output regression approach suggests that M-SVR can be considered a convenient alternative for nonparametric biophysical parameter estimation and model inversion.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2011.2109934