Loading…
One-Step Electrochemical Approach to the Synthesis of Graphene/MnO2 Nanowall Hybrids
We have demonstrated a one-step and effective electrochemical method to synthesize graphene/MnO2 nanowall hybrids (GMHs). Graphene oxide (GO) was electrochemically reduced to graphene (GN), accompanied by the simultaneous formation of MnO2 with a nanowall morphology via cathodic electrochemical depo...
Saved in:
Published in: | Nano research 2011-07, Vol.4 (7), p.648-657 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have demonstrated a one-step and effective electrochemical method to synthesize graphene/MnO2 nanowall hybrids (GMHs). Graphene oxide (GO) was electrochemically reduced to graphene (GN), accompanied by the simultaneous formation of MnO2 with a nanowall morphology via cathodic electrochemical deposition. The morphology and structure of the GMHs were systematically characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The resulting GMHs combine the advantages of GN and the nanowall array morphology of MnO2 in providing a conductive network of amorphous nanocomposite, which shows good electrochemical capacitive behavior. This simple approach should find practical applications in the large-scale production of GMHs. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-011-0120-2 |