Loading…
Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS
The U-Pb geochronology of perovskite is a powerful tool in constraining the emplacement age of silica-undersaturated rocks. The trace-element and U-Pb isotopic compositions of perovskite from clinopyroxenite and silicocarbonatite from the Afrikanda plutonic complex (Kola, Russia) were determined by...
Saved in:
Published in: | Mineralogy and petrology 2010-11, Vol.100 (3-4), p.95-103 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The U-Pb geochronology of perovskite is a powerful tool in constraining the emplacement age of silica-undersaturated rocks. The trace-element and U-Pb isotopic compositions of perovskite from clinopyroxenite and silicocarbonatite from the Afrikanda plutonic complex (Kola, Russia) were determined by laser-ablation inductively-coupled mass-spectrometry (LA-ICP-MS). In addition, the Sr isotopic composition of perovskite was measured by isotope-dilution mass-spectrometry to better constrain the relations between its host rocks. Perovskite from the two rock types shows a different degree of enrichment in Na, Mg, Mn, Pb, Fe, Al, V, rare-earth elements, Zr, Hf, Th, U and Ta. The perovskite
87
Sr/
86
Sr values are within analytical uncertainty of one another and fall within the range of mantle values. The
206
Pb/
238
U ages (corrected for common lead using
207
Pb-method) of perovskite from silicocarbonatite statistically yield a single population with a weighted mean of 371 ± 8 Ma (2σ; MSWD = 0.071). This age is indistinguishable, within uncertainty, to the clinopyroxenite weighted mean
206
Pb/
238
U age of 374 ± 10 Ma (2σ; MSWD = 0.18). Our data are in good agreement with the previous geochronological study of the Afrikanda complex. The observed variations in trace-element composition of perovskite from silicocarbonatite and clinopyroxenite indicate that these rocks are not related by crystal fractionation. The Sr isotopic ratios and the fact that the two rocks are coeval suggest that they were either produced from a single parental melt by liquid immiscibility, or from two separate magmas derived at different degrees of partial melting from an isotopically equilibrated, but modally complex mantle source. |
---|---|
ISSN: | 0930-0708 1438-1168 |
DOI: | 10.1007/s00710-010-0131-9 |