Loading…

Adaptive Learning for Target Tracking and True Linking Discovering Across Multiple Non-Overlapping Cameras

To track targets across networked cameras with disjoint views, one of the major problems is to learn the spatio-temporal relationship and the appearance relationship, where the appearance relationship is usually modeled as a brightness transfer function. Traditional methods learning the relationship...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2011-08, Vol.13 (4), p.625-638
Main Authors: CHEN, Kuan-Wen, LAI, Chih-Chuan, LEE, Pei-Jyun, CHEN, Chu-Song, HUNG, Yi-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-7dbc3afea809df4235ca3e09a34fbad4ace542cdec408aef930dce2dad0c7aa13
cites cdi_FETCH-LOGICAL-c394t-7dbc3afea809df4235ca3e09a34fbad4ace542cdec408aef930dce2dad0c7aa13
container_end_page 638
container_issue 4
container_start_page 625
container_title IEEE transactions on multimedia
container_volume 13
creator CHEN, Kuan-Wen
LAI, Chih-Chuan
LEE, Pei-Jyun
CHEN, Chu-Song
HUNG, Yi-Ping
description To track targets across networked cameras with disjoint views, one of the major problems is to learn the spatio-temporal relationship and the appearance relationship, where the appearance relationship is usually modeled as a brightness transfer function. Traditional methods learning the relationships by using either hand-labeled correspondence or batch-learning procedure are applicable when the environment remains unchanged. However, in many situations such as lighting changes, the environment varies seriously and hence traditional methods fail to work. In this paper, we propose an unsupervised method which learns adaptively and can be applied to long-term monitoring. Furthermore, we propose a method that can avoid weak links and discover the true valid links among the entry/exit zones of cameras from the correspondence. Experimental results demonstrate that our method outperforms existing methods in learning both the spatio-temporal and the appearance relationship, and can achieve high tracking accuracy in both indoor and outdoor environment.
doi_str_mv 10.1109/TMM.2011.2131639
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_878270047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5737792</ieee_id><sourcerecordid>907944686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-7dbc3afea809df4235ca3e09a34fbad4ace542cdec408aef930dce2dad0c7aa13</originalsourceid><addsrcrecordid>eNpdkMtLw0AQxoMo-LwLXoIgnlJnH-lmj6U-odVLPS_j7kRS0yTuJoL_vRtbPHiax_ebYeZLknMGE8ZA36yWywkHxiacCTYVei85YlqyDECp_ZjnHDLNGRwmxyGsAZjMQR0l65nDrq--KF0Q-qZq3tOy9ekK_Tv16cqj_Rh72LhYDJGqmt_GbRVs-0V-zGfWtyGky6Huq66m9Lltspeo1dh1oz7HDXkMp8lBiXWgs108SV7v71bzx2zx8vA0ny0yK7TsM-XerMCSsADtSslFblEQaBSyfEMn0VIuuXVkJRRIpRbgLHGHDqxCZOIkud7u7Xz7OVDozSYeS3WNDbVDMBqUlnJaTCN5-Y9ct4Nv4nGmUAVXAFJFCLbQ75eeStP5aoP-2zAwo_UmWm9G683O-jhytduLwWJdemxsFf7muIyMZkXkLrZcRUR_cq6EUpqLH_8ojnc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878270047</pqid></control><display><type>article</type><title>Adaptive Learning for Target Tracking and True Linking Discovering Across Multiple Non-Overlapping Cameras</title><source>IEEE Xplore (Online service)</source><creator>CHEN, Kuan-Wen ; LAI, Chih-Chuan ; LEE, Pei-Jyun ; CHEN, Chu-Song ; HUNG, Yi-Ping</creator><creatorcontrib>CHEN, Kuan-Wen ; LAI, Chih-Chuan ; LEE, Pei-Jyun ; CHEN, Chu-Song ; HUNG, Yi-Ping</creatorcontrib><description>To track targets across networked cameras with disjoint views, one of the major problems is to learn the spatio-temporal relationship and the appearance relationship, where the appearance relationship is usually modeled as a brightness transfer function. Traditional methods learning the relationships by using either hand-labeled correspondence or batch-learning procedure are applicable when the environment remains unchanged. However, in many situations such as lighting changes, the environment varies seriously and hence traditional methods fail to work. In this paper, we propose an unsupervised method which learns adaptively and can be applied to long-term monitoring. Furthermore, we propose a method that can avoid weak links and discover the true valid links among the entry/exit zones of cameras from the correspondence. Experimental results demonstrate that our method outperforms existing methods in learning both the spatio-temporal and the appearance relationship, and can achieve high tracking accuracy in both indoor and outdoor environment.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2011.2131639</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Brightness ; Brightness transfer function ; camera network ; Cameras ; Computer science; control theory; systems ; Exact sciences and technology ; Learning ; Lighting ; Links ; Mathematical models ; Methods ; Monitoring ; Multimedia ; non-overlapping cameras ; Pattern recognition. Digital image processing. Computational geometry ; spatio-temporal relationship ; Target tracking ; Topology ; Tracking ; Transfer functions ; visual surveillance ; visual tracking</subject><ispartof>IEEE transactions on multimedia, 2011-08, Vol.13 (4), p.625-638</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-7dbc3afea809df4235ca3e09a34fbad4ace542cdec408aef930dce2dad0c7aa13</citedby><cites>FETCH-LOGICAL-c394t-7dbc3afea809df4235ca3e09a34fbad4ace542cdec408aef930dce2dad0c7aa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5737792$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24393918$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEN, Kuan-Wen</creatorcontrib><creatorcontrib>LAI, Chih-Chuan</creatorcontrib><creatorcontrib>LEE, Pei-Jyun</creatorcontrib><creatorcontrib>CHEN, Chu-Song</creatorcontrib><creatorcontrib>HUNG, Yi-Ping</creatorcontrib><title>Adaptive Learning for Target Tracking and True Linking Discovering Across Multiple Non-Overlapping Cameras</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>To track targets across networked cameras with disjoint views, one of the major problems is to learn the spatio-temporal relationship and the appearance relationship, where the appearance relationship is usually modeled as a brightness transfer function. Traditional methods learning the relationships by using either hand-labeled correspondence or batch-learning procedure are applicable when the environment remains unchanged. However, in many situations such as lighting changes, the environment varies seriously and hence traditional methods fail to work. In this paper, we propose an unsupervised method which learns adaptively and can be applied to long-term monitoring. Furthermore, we propose a method that can avoid weak links and discover the true valid links among the entry/exit zones of cameras from the correspondence. Experimental results demonstrate that our method outperforms existing methods in learning both the spatio-temporal and the appearance relationship, and can achieve high tracking accuracy in both indoor and outdoor environment.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Brightness</subject><subject>Brightness transfer function</subject><subject>camera network</subject><subject>Cameras</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning</subject><subject>Lighting</subject><subject>Links</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Multimedia</subject><subject>non-overlapping cameras</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>spatio-temporal relationship</subject><subject>Target tracking</subject><subject>Topology</subject><subject>Tracking</subject><subject>Transfer functions</subject><subject>visual surveillance</subject><subject>visual tracking</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLw0AQxoMo-LwLXoIgnlJnH-lmj6U-odVLPS_j7kRS0yTuJoL_vRtbPHiax_ebYeZLknMGE8ZA36yWywkHxiacCTYVei85YlqyDECp_ZjnHDLNGRwmxyGsAZjMQR0l65nDrq--KF0Q-qZq3tOy9ekK_Tv16cqj_Rh72LhYDJGqmt_GbRVs-0V-zGfWtyGky6Huq66m9Lltspeo1dh1oz7HDXkMp8lBiXWgs108SV7v71bzx2zx8vA0ny0yK7TsM-XerMCSsADtSslFblEQaBSyfEMn0VIuuXVkJRRIpRbgLHGHDqxCZOIkud7u7Xz7OVDozSYeS3WNDbVDMBqUlnJaTCN5-Y9ct4Nv4nGmUAVXAFJFCLbQ75eeStP5aoP-2zAwo_UmWm9G683O-jhytduLwWJdemxsFf7muIyMZkXkLrZcRUR_cq6EUpqLH_8ojnc</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>CHEN, Kuan-Wen</creator><creator>LAI, Chih-Chuan</creator><creator>LEE, Pei-Jyun</creator><creator>CHEN, Chu-Song</creator><creator>HUNG, Yi-Ping</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110801</creationdate><title>Adaptive Learning for Target Tracking and True Linking Discovering Across Multiple Non-Overlapping Cameras</title><author>CHEN, Kuan-Wen ; LAI, Chih-Chuan ; LEE, Pei-Jyun ; CHEN, Chu-Song ; HUNG, Yi-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-7dbc3afea809df4235ca3e09a34fbad4ace542cdec408aef930dce2dad0c7aa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Brightness</topic><topic>Brightness transfer function</topic><topic>camera network</topic><topic>Cameras</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning</topic><topic>Lighting</topic><topic>Links</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Multimedia</topic><topic>non-overlapping cameras</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>spatio-temporal relationship</topic><topic>Target tracking</topic><topic>Topology</topic><topic>Tracking</topic><topic>Transfer functions</topic><topic>visual surveillance</topic><topic>visual tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, Kuan-Wen</creatorcontrib><creatorcontrib>LAI, Chih-Chuan</creatorcontrib><creatorcontrib>LEE, Pei-Jyun</creatorcontrib><creatorcontrib>CHEN, Chu-Song</creatorcontrib><creatorcontrib>HUNG, Yi-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, Kuan-Wen</au><au>LAI, Chih-Chuan</au><au>LEE, Pei-Jyun</au><au>CHEN, Chu-Song</au><au>HUNG, Yi-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Learning for Target Tracking and True Linking Discovering Across Multiple Non-Overlapping Cameras</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>13</volume><issue>4</issue><spage>625</spage><epage>638</epage><pages>625-638</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>To track targets across networked cameras with disjoint views, one of the major problems is to learn the spatio-temporal relationship and the appearance relationship, where the appearance relationship is usually modeled as a brightness transfer function. Traditional methods learning the relationships by using either hand-labeled correspondence or batch-learning procedure are applicable when the environment remains unchanged. However, in many situations such as lighting changes, the environment varies seriously and hence traditional methods fail to work. In this paper, we propose an unsupervised method which learns adaptively and can be applied to long-term monitoring. Furthermore, we propose a method that can avoid weak links and discover the true valid links among the entry/exit zones of cameras from the correspondence. Experimental results demonstrate that our method outperforms existing methods in learning both the spatio-temporal and the appearance relationship, and can achieve high tracking accuracy in both indoor and outdoor environment.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMM.2011.2131639</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2011-08, Vol.13 (4), p.625-638
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_878270047
source IEEE Xplore (Online service)
subjects Applied sciences
Artificial intelligence
Brightness
Brightness transfer function
camera network
Cameras
Computer science
control theory
systems
Exact sciences and technology
Learning
Lighting
Links
Mathematical models
Methods
Monitoring
Multimedia
non-overlapping cameras
Pattern recognition. Digital image processing. Computational geometry
spatio-temporal relationship
Target tracking
Topology
Tracking
Transfer functions
visual surveillance
visual tracking
title Adaptive Learning for Target Tracking and True Linking Discovering Across Multiple Non-Overlapping Cameras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Learning%20for%20Target%20Tracking%20and%20True%20Linking%20Discovering%20Across%20Multiple%20Non-Overlapping%20Cameras&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=CHEN,%20Kuan-Wen&rft.date=2011-08-01&rft.volume=13&rft.issue=4&rft.spage=625&rft.epage=638&rft.pages=625-638&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2011.2131639&rft_dat=%3Cproquest_pasca%3E907944686%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-7dbc3afea809df4235ca3e09a34fbad4ace542cdec408aef930dce2dad0c7aa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=878270047&rft_id=info:pmid/&rft_ieee_id=5737792&rfr_iscdi=true