Loading…

Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems

Magmatic-hydrothermal copper ore formation involves multiple pulses of subvolcanic porphyry intrusion, vein opening, and hydrothermal ore deposition. It is driven by larger subjacent magma reservoirs, acting as the source of fluid and ore-forming components. High-precision U-Pb ages of individual zi...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2011-08, Vol.39 (8), p.731-734
Main Authors: von Quadt, Albrecht, Erni, Michaela, Martinek, Klara, Moll, Melanie, Peytcheva, Irena, Heinrich, Christoph A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a352t-2aca819afb20d180ef9f6ba8ebca9bba734a9905cb8b840f8ab85d4bb8f10d073
cites cdi_FETCH-LOGICAL-a352t-2aca819afb20d180ef9f6ba8ebca9bba734a9905cb8b840f8ab85d4bb8f10d073
container_end_page 734
container_issue 8
container_start_page 731
container_title Geology (Boulder)
container_volume 39
creator von Quadt, Albrecht
Erni, Michaela
Martinek, Klara
Moll, Melanie
Peytcheva, Irena
Heinrich, Christoph A
description Magmatic-hydrothermal copper ore formation involves multiple pulses of subvolcanic porphyry intrusion, vein opening, and hydrothermal ore deposition. It is driven by larger subjacent magma reservoirs, acting as the source of fluid and ore-forming components. High-precision U-Pb ages of individual zircon crystals from porphyries immediately predating and postdating Cu-Au mineralization at Bingham Canyon (Utah, United States) and Bajo de la Alumbrera (northwestern Argentina) show a significant spread of reliably concordant ages. This demonstrates zircon crystal formation over a protracted period of ∼1 m.y., which is interpreted to record the lifetime of the magma reservoir from which porphyries and ore fluids were extracted. The youngest zircons in all pre-ore and post-ore intrusions overlap within a much shorter time interval of 0.32 m.y. at Bingham Canyon and 0.090 m.y. at Alumbrera; these youngest zircons of each intrusion are interpreted to bracket the maximum duration of porphyry emplacement and ore formation to short periods, consistent with thermal constraints. This study illustrates that age brackets based on individual magmatic zircon grains are geologically more informative than the calculation of means and standard deviations based on apparently normal age distributions in zircon populations.
doi_str_mv 10.1130/G31966.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_879337927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408234291</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-2aca819afb20d180ef9f6ba8ebca9bba734a9905cb8b840f8ab85d4bb8f10d073</originalsourceid><addsrcrecordid>eNpF0M1KAzEUBeAgCtYq-AiDK0Gm3pvMT7KUolUouLEbNyHJJG3KzKQmU6Q-vVMquLpc-DgHDiG3CDNEBo8LhqKqZnhGJigKltOK03MyARCY1xWyS3KV0hYAi7LmE7L69NGEPjPxkAbVtv5HDX78Vd9kw8ZmrXd28J1NWXBZiDZ3IXa-X2edWncjNfnm0MQw0tipNktjiu3SNblwqk325u9Oyerl-WP-mi_fF2_zp2WuWEmHnCqjOArlNIUGOVgnXKUVt9ooobWqWaGEgNJornkBjivNy6bQmjuEBmo2JXen3F0MX3ubBrkN-9iPlZLXgrFa0CO6PyETQ0rROrmLvlPxIBHkcTN52kziSB9OdG1DMt72xn6H2Db_sRQQJVQCKsp-AVv8bzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879337927</pqid></control><display><type>article</type><title>Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems</title><source>GeoScienceWorld</source><creator>von Quadt, Albrecht ; Erni, Michaela ; Martinek, Klara ; Moll, Melanie ; Peytcheva, Irena ; Heinrich, Christoph A</creator><creatorcontrib>von Quadt, Albrecht ; Erni, Michaela ; Martinek, Klara ; Moll, Melanie ; Peytcheva, Irena ; Heinrich, Christoph A</creatorcontrib><description>Magmatic-hydrothermal copper ore formation involves multiple pulses of subvolcanic porphyry intrusion, vein opening, and hydrothermal ore deposition. It is driven by larger subjacent magma reservoirs, acting as the source of fluid and ore-forming components. High-precision U-Pb ages of individual zircon crystals from porphyries immediately predating and postdating Cu-Au mineralization at Bingham Canyon (Utah, United States) and Bajo de la Alumbrera (northwestern Argentina) show a significant spread of reliably concordant ages. This demonstrates zircon crystal formation over a protracted period of ∼1 m.y., which is interpreted to record the lifetime of the magma reservoir from which porphyries and ore fluids were extracted. The youngest zircons in all pre-ore and post-ore intrusions overlap within a much shorter time interval of 0.32 m.y. at Bingham Canyon and 0.090 m.y. at Alumbrera; these youngest zircons of each intrusion are interpreted to bracket the maximum duration of porphyry emplacement and ore formation to short periods, consistent with thermal constraints. This study illustrates that age brackets based on individual magmatic zircon grains are geologically more informative than the calculation of means and standard deviations based on apparently normal age distributions in zircon populations.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G31966.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>absolute age ; Alumbrera Mine ; Argentina ; Bingham mining district ; Bingham Utah ; case studies ; Catamarca Argentina ; Copper ; copper ores ; crystal growth ; Crystallization ; Economic geology ; Geochronology ; Geology ; gold ores ; hydrothermal conditions ; igneous rocks ; intrusions ; Magma ; magma chambers ; magmas ; magmatism ; metal ores ; metallogeny ; mineral deposits, genesis ; mineralization ; nesosilicates ; ore-forming fluids ; orthosilicates ; porphyry ; porphyry copper ; porphyry gold ; Salt Lake County Utah ; silicates ; South America ; Studies ; U/Pb ; United States ; Utah ; volcanic rocks ; zircon ; zircon group</subject><ispartof>Geology (Boulder), 2011-08, Vol.39 (8), p.731-734</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-2aca819afb20d180ef9f6ba8ebca9bba734a9905cb8b840f8ab85d4bb8f10d073</citedby><cites>FETCH-LOGICAL-a352t-2aca819afb20d180ef9f6ba8ebca9bba734a9905cb8b840f8ab85d4bb8f10d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G31966.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>von Quadt, Albrecht</creatorcontrib><creatorcontrib>Erni, Michaela</creatorcontrib><creatorcontrib>Martinek, Klara</creatorcontrib><creatorcontrib>Moll, Melanie</creatorcontrib><creatorcontrib>Peytcheva, Irena</creatorcontrib><creatorcontrib>Heinrich, Christoph A</creatorcontrib><title>Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems</title><title>Geology (Boulder)</title><description>Magmatic-hydrothermal copper ore formation involves multiple pulses of subvolcanic porphyry intrusion, vein opening, and hydrothermal ore deposition. It is driven by larger subjacent magma reservoirs, acting as the source of fluid and ore-forming components. High-precision U-Pb ages of individual zircon crystals from porphyries immediately predating and postdating Cu-Au mineralization at Bingham Canyon (Utah, United States) and Bajo de la Alumbrera (northwestern Argentina) show a significant spread of reliably concordant ages. This demonstrates zircon crystal formation over a protracted period of ∼1 m.y., which is interpreted to record the lifetime of the magma reservoir from which porphyries and ore fluids were extracted. The youngest zircons in all pre-ore and post-ore intrusions overlap within a much shorter time interval of 0.32 m.y. at Bingham Canyon and 0.090 m.y. at Alumbrera; these youngest zircons of each intrusion are interpreted to bracket the maximum duration of porphyry emplacement and ore formation to short periods, consistent with thermal constraints. This study illustrates that age brackets based on individual magmatic zircon grains are geologically more informative than the calculation of means and standard deviations based on apparently normal age distributions in zircon populations.</description><subject>absolute age</subject><subject>Alumbrera Mine</subject><subject>Argentina</subject><subject>Bingham mining district</subject><subject>Bingham Utah</subject><subject>case studies</subject><subject>Catamarca Argentina</subject><subject>Copper</subject><subject>copper ores</subject><subject>crystal growth</subject><subject>Crystallization</subject><subject>Economic geology</subject><subject>Geochronology</subject><subject>Geology</subject><subject>gold ores</subject><subject>hydrothermal conditions</subject><subject>igneous rocks</subject><subject>intrusions</subject><subject>Magma</subject><subject>magma chambers</subject><subject>magmas</subject><subject>magmatism</subject><subject>metal ores</subject><subject>metallogeny</subject><subject>mineral deposits, genesis</subject><subject>mineralization</subject><subject>nesosilicates</subject><subject>ore-forming fluids</subject><subject>orthosilicates</subject><subject>porphyry</subject><subject>porphyry copper</subject><subject>porphyry gold</subject><subject>Salt Lake County Utah</subject><subject>silicates</subject><subject>South America</subject><subject>Studies</subject><subject>U/Pb</subject><subject>United States</subject><subject>Utah</subject><subject>volcanic rocks</subject><subject>zircon</subject><subject>zircon group</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpF0M1KAzEUBeAgCtYq-AiDK0Gm3pvMT7KUolUouLEbNyHJJG3KzKQmU6Q-vVMquLpc-DgHDiG3CDNEBo8LhqKqZnhGJigKltOK03MyARCY1xWyS3KV0hYAi7LmE7L69NGEPjPxkAbVtv5HDX78Vd9kw8ZmrXd28J1NWXBZiDZ3IXa-X2edWncjNfnm0MQw0tipNktjiu3SNblwqk325u9Oyerl-WP-mi_fF2_zp2WuWEmHnCqjOArlNIUGOVgnXKUVt9ooobWqWaGEgNJornkBjivNy6bQmjuEBmo2JXen3F0MX3ubBrkN-9iPlZLXgrFa0CO6PyETQ0rROrmLvlPxIBHkcTN52kziSB9OdG1DMt72xn6H2Db_sRQQJVQCKsp-AVv8bzM</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>von Quadt, Albrecht</creator><creator>Erni, Michaela</creator><creator>Martinek, Klara</creator><creator>Moll, Melanie</creator><creator>Peytcheva, Irena</creator><creator>Heinrich, Christoph A</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201108</creationdate><title>Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems</title><author>von Quadt, Albrecht ; Erni, Michaela ; Martinek, Klara ; Moll, Melanie ; Peytcheva, Irena ; Heinrich, Christoph A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-2aca819afb20d180ef9f6ba8ebca9bba734a9905cb8b840f8ab85d4bb8f10d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>absolute age</topic><topic>Alumbrera Mine</topic><topic>Argentina</topic><topic>Bingham mining district</topic><topic>Bingham Utah</topic><topic>case studies</topic><topic>Catamarca Argentina</topic><topic>Copper</topic><topic>copper ores</topic><topic>crystal growth</topic><topic>Crystallization</topic><topic>Economic geology</topic><topic>Geochronology</topic><topic>Geology</topic><topic>gold ores</topic><topic>hydrothermal conditions</topic><topic>igneous rocks</topic><topic>intrusions</topic><topic>Magma</topic><topic>magma chambers</topic><topic>magmas</topic><topic>magmatism</topic><topic>metal ores</topic><topic>metallogeny</topic><topic>mineral deposits, genesis</topic><topic>mineralization</topic><topic>nesosilicates</topic><topic>ore-forming fluids</topic><topic>orthosilicates</topic><topic>porphyry</topic><topic>porphyry copper</topic><topic>porphyry gold</topic><topic>Salt Lake County Utah</topic><topic>silicates</topic><topic>South America</topic><topic>Studies</topic><topic>U/Pb</topic><topic>United States</topic><topic>Utah</topic><topic>volcanic rocks</topic><topic>zircon</topic><topic>zircon group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Quadt, Albrecht</creatorcontrib><creatorcontrib>Erni, Michaela</creatorcontrib><creatorcontrib>Martinek, Klara</creatorcontrib><creatorcontrib>Moll, Melanie</creatorcontrib><creatorcontrib>Peytcheva, Irena</creatorcontrib><creatorcontrib>Heinrich, Christoph A</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Quadt, Albrecht</au><au>Erni, Michaela</au><au>Martinek, Klara</au><au>Moll, Melanie</au><au>Peytcheva, Irena</au><au>Heinrich, Christoph A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems</atitle><jtitle>Geology (Boulder)</jtitle><date>2011-08</date><risdate>2011</risdate><volume>39</volume><issue>8</issue><spage>731</spage><epage>734</epage><pages>731-734</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>Magmatic-hydrothermal copper ore formation involves multiple pulses of subvolcanic porphyry intrusion, vein opening, and hydrothermal ore deposition. It is driven by larger subjacent magma reservoirs, acting as the source of fluid and ore-forming components. High-precision U-Pb ages of individual zircon crystals from porphyries immediately predating and postdating Cu-Au mineralization at Bingham Canyon (Utah, United States) and Bajo de la Alumbrera (northwestern Argentina) show a significant spread of reliably concordant ages. This demonstrates zircon crystal formation over a protracted period of ∼1 m.y., which is interpreted to record the lifetime of the magma reservoir from which porphyries and ore fluids were extracted. The youngest zircons in all pre-ore and post-ore intrusions overlap within a much shorter time interval of 0.32 m.y. at Bingham Canyon and 0.090 m.y. at Alumbrera; these youngest zircons of each intrusion are interpreted to bracket the maximum duration of porphyry emplacement and ore formation to short periods, consistent with thermal constraints. This study illustrates that age brackets based on individual magmatic zircon grains are geologically more informative than the calculation of means and standard deviations based on apparently normal age distributions in zircon populations.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G31966.1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2011-08, Vol.39 (8), p.731-734
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_journals_879337927
source GeoScienceWorld
subjects absolute age
Alumbrera Mine
Argentina
Bingham mining district
Bingham Utah
case studies
Catamarca Argentina
Copper
copper ores
crystal growth
Crystallization
Economic geology
Geochronology
Geology
gold ores
hydrothermal conditions
igneous rocks
intrusions
Magma
magma chambers
magmas
magmatism
metal ores
metallogeny
mineral deposits, genesis
mineralization
nesosilicates
ore-forming fluids
orthosilicates
porphyry
porphyry copper
porphyry gold
Salt Lake County Utah
silicates
South America
Studies
U/Pb
United States
Utah
volcanic rocks
zircon
zircon group
title Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zircon%20crystallization%20and%20the%20lifetimes%20of%20ore-forming%20magmatic-hydrothermal%20systems&rft.jtitle=Geology%20(Boulder)&rft.au=von%20Quadt,%20Albrecht&rft.date=2011-08&rft.volume=39&rft.issue=8&rft.spage=731&rft.epage=734&rft.pages=731-734&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G31966.1&rft_dat=%3Cproquest_cross%3E2408234291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a352t-2aca819afb20d180ef9f6ba8ebca9bba734a9905cb8b840f8ab85d4bb8f10d073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=879337927&rft_id=info:pmid/&rfr_iscdi=true