Loading…

Photoelectronic properties of HgI2 crystals for nuclear radiation detection

Photoelectronic properties of red mercuric iodide single crystals, grown from its saturated solution in tetrahydrofuran, have been studied for the wavelength range 450–700 nm at temperatures 80,110, 175, 235 and 300 K. Various aspects of the optical generation of charge carriers have been discussed....

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of materials science 2002-04, Vol.25 (2), p.85-93
Main Authors: Sharma, S. L., Acharya, H. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photoelectronic properties of red mercuric iodide single crystals, grown from its saturated solution in tetrahydrofuran, have been studied for the wavelength range 450–700 nm at temperatures 80,110, 175, 235 and 300 K. Various aspects of the optical generation of charge carriers have been discussed. The computer simulation of the room temperature photoconductivity has generated the optimized values of the mobility-lifetime products μeτe = 5.67 × 10−5 cm2/V, μhτh = 0.18 × 10−5 cm2/V), and surface recombination velocities (Se = 3.2 × 105 cm/s, Sh = 4.5 × 105 cm/s) of the charge carriers in these crystals. The estimated values of the electron and hole drift lengths for typical electric fields suggest that, under the negative electrode illumination, THF α-HgI2 crystals have high potential as regards to their use as photodetectors in most of the scintillation spectrometers.
ISSN:0250-4707
0973-7669
DOI:10.1007/BF02706226