Loading…
Nonlinear Patterns in Urban Crime: Hotspots, Bifurcations, and Suppression
We present a weakly nonlinear analysis of our recently developed model for the formation of crime patterns. Using a perturbative approach, we find amplitude equations that govern the development of crime "hotspot" patterns in our system in both the one-dimensional (1D) and two-dimensional...
Saved in:
Published in: | SIAM journal on applied dynamical systems 2010-01, Vol.9 (2), p.462-483 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-ffda178c1711d1c2ad1c1e60a2b559981f0d22ef64b92ca3abe6c18722ddc59a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-ffda178c1711d1c2ad1c1e60a2b559981f0d22ef64b92ca3abe6c18722ddc59a3 |
container_end_page | 483 |
container_issue | 2 |
container_start_page | 462 |
container_title | SIAM journal on applied dynamical systems |
container_volume | 9 |
creator | Short, M. B. Bertozzi, A. L. Brantingham, P. J. |
description | We present a weakly nonlinear analysis of our recently developed model for the formation of crime patterns. Using a perturbative approach, we find amplitude equations that govern the development of crime "hotspot" patterns in our system in both the one-dimensional (1D) and two-dimensional (2D) cases. In addition to the supercritical spots already shown to exist in our previous work, we prove here the existence of subcritical hotspots that arise via subcritical pitchfork bifurcations or transcritical bifurcations, depending on the geometry. We present numerical results that both validate our analytical findings and confirm the existence of these subcritical hotspots as stable states. Finally, we examine the differences between these two types of hotspots with regard to attempted hotspot suppression, referencing the varying levels of success such attempts have had in real world scenarios. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/090759069 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_879719829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410661931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-ffda178c1711d1c2ad1c1e60a2b559981f0d22ef64b92ca3abe6c18722ddc59a3</originalsourceid><addsrcrecordid>eNpNUE1LxDAQDaLgunrwHwRvgtVMumkab1rUVRYVdM9lmg_osiY1aQ_-eyMr4mFm3gyPmTePkFNglwClvGKKSaFYpfbIDERZFYwt2P4_fEiOUtowBpJzPiNPz8Fve28x0lccRxt9or2n69ihp03sP-w1XYYxDTku6G3vpqhx7IPPHXpD36ZhiDalPDkmBw63yZ781jlZ39-9N8ti9fLw2NysCl0KORbOGQRZa5AABjTHnMBWDHknhFI1OGY4t65adIprLLGzlYY6yzVGC4XlnJzt9g4xfE42je0mTNHnk20tlQRVc5VJ5zuSjiGlaF075GcwfrXA2h-n2j-nym_nGVpz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879719829</pqid></control><display><type>article</type><title>Nonlinear Patterns in Urban Crime: Hotspots, Bifurcations, and Suppression</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM global</source><creator>Short, M. B. ; Bertozzi, A. L. ; Brantingham, P. J.</creator><creatorcontrib>Short, M. B. ; Bertozzi, A. L. ; Brantingham, P. J.</creatorcontrib><description>We present a weakly nonlinear analysis of our recently developed model for the formation of crime patterns. Using a perturbative approach, we find amplitude equations that govern the development of crime "hotspot" patterns in our system in both the one-dimensional (1D) and two-dimensional (2D) cases. In addition to the supercritical spots already shown to exist in our previous work, we prove here the existence of subcritical hotspots that arise via subcritical pitchfork bifurcations or transcritical bifurcations, depending on the geometry. We present numerical results that both validate our analytical findings and confirm the existence of these subcritical hotspots as stable states. Finally, we examine the differences between these two types of hotspots with regard to attempted hotspot suppression, referencing the varying levels of success such attempts have had in real world scenarios. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1536-0040</identifier><identifier>EISSN: 1536-0040</identifier><identifier>DOI: 10.1137/090759069</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Crime ; Mathematical models ; Studies ; Urban areas</subject><ispartof>SIAM journal on applied dynamical systems, 2010-01, Vol.9 (2), p.462-483</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-ffda178c1711d1c2ad1c1e60a2b559981f0d22ef64b92ca3abe6c18722ddc59a3</citedby><cites>FETCH-LOGICAL-c357t-ffda178c1711d1c2ad1c1e60a2b559981f0d22ef64b92ca3abe6c18722ddc59a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/879719829?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11669,27903,27904,36039,44342</link.rule.ids></links><search><creatorcontrib>Short, M. B.</creatorcontrib><creatorcontrib>Bertozzi, A. L.</creatorcontrib><creatorcontrib>Brantingham, P. J.</creatorcontrib><title>Nonlinear Patterns in Urban Crime: Hotspots, Bifurcations, and Suppression</title><title>SIAM journal on applied dynamical systems</title><description>We present a weakly nonlinear analysis of our recently developed model for the formation of crime patterns. Using a perturbative approach, we find amplitude equations that govern the development of crime "hotspot" patterns in our system in both the one-dimensional (1D) and two-dimensional (2D) cases. In addition to the supercritical spots already shown to exist in our previous work, we prove here the existence of subcritical hotspots that arise via subcritical pitchfork bifurcations or transcritical bifurcations, depending on the geometry. We present numerical results that both validate our analytical findings and confirm the existence of these subcritical hotspots as stable states. Finally, we examine the differences between these two types of hotspots with regard to attempted hotspot suppression, referencing the varying levels of success such attempts have had in real world scenarios. [PUBLICATION ABSTRACT]</description><subject>Crime</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Urban areas</subject><issn>1536-0040</issn><issn>1536-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpNUE1LxDAQDaLgunrwHwRvgtVMumkab1rUVRYVdM9lmg_osiY1aQ_-eyMr4mFm3gyPmTePkFNglwClvGKKSaFYpfbIDERZFYwt2P4_fEiOUtowBpJzPiNPz8Fve28x0lccRxt9or2n69ihp03sP-w1XYYxDTku6G3vpqhx7IPPHXpD36ZhiDalPDkmBw63yZ781jlZ39-9N8ti9fLw2NysCl0KORbOGQRZa5AABjTHnMBWDHknhFI1OGY4t65adIprLLGzlYY6yzVGC4XlnJzt9g4xfE42je0mTNHnk20tlQRVc5VJ5zuSjiGlaF075GcwfrXA2h-n2j-nym_nGVpz</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Short, M. B.</creator><creator>Bertozzi, A. L.</creator><creator>Brantingham, P. J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20100101</creationdate><title>Nonlinear Patterns in Urban Crime: Hotspots, Bifurcations, and Suppression</title><author>Short, M. B. ; Bertozzi, A. L. ; Brantingham, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-ffda178c1711d1c2ad1c1e60a2b559981f0d22ef64b92ca3abe6c18722ddc59a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Crime</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Short, M. B.</creatorcontrib><creatorcontrib>Bertozzi, A. L.</creatorcontrib><creatorcontrib>Brantingham, P. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Short, M. B.</au><au>Bertozzi, A. L.</au><au>Brantingham, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Patterns in Urban Crime: Hotspots, Bifurcations, and Suppression</atitle><jtitle>SIAM journal on applied dynamical systems</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>9</volume><issue>2</issue><spage>462</spage><epage>483</epage><pages>462-483</pages><issn>1536-0040</issn><eissn>1536-0040</eissn><abstract>We present a weakly nonlinear analysis of our recently developed model for the formation of crime patterns. Using a perturbative approach, we find amplitude equations that govern the development of crime "hotspot" patterns in our system in both the one-dimensional (1D) and two-dimensional (2D) cases. In addition to the supercritical spots already shown to exist in our previous work, we prove here the existence of subcritical hotspots that arise via subcritical pitchfork bifurcations or transcritical bifurcations, depending on the geometry. We present numerical results that both validate our analytical findings and confirm the existence of these subcritical hotspots as stable states. Finally, we examine the differences between these two types of hotspots with regard to attempted hotspot suppression, referencing the varying levels of success such attempts have had in real world scenarios. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090759069</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-0040 |
ispartof | SIAM journal on applied dynamical systems, 2010-01, Vol.9 (2), p.462-483 |
issn | 1536-0040 1536-0040 |
language | eng |
recordid | cdi_proquest_journals_879719829 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM global |
subjects | Crime Mathematical models Studies Urban areas |
title | Nonlinear Patterns in Urban Crime: Hotspots, Bifurcations, and Suppression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Patterns%20in%20Urban%20Crime:%20Hotspots,%20Bifurcations,%20and%20Suppression&rft.jtitle=SIAM%20journal%20on%20applied%20dynamical%20systems&rft.au=Short,%20M.%20B.&rft.date=2010-01-01&rft.volume=9&rft.issue=2&rft.spage=462&rft.epage=483&rft.pages=462-483&rft.issn=1536-0040&rft.eissn=1536-0040&rft_id=info:doi/10.1137/090759069&rft_dat=%3Cproquest_cross%3E2410661931%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-ffda178c1711d1c2ad1c1e60a2b559981f0d22ef64b92ca3abe6c18722ddc59a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=879719829&rft_id=info:pmid/&rfr_iscdi=true |