Loading…

Hazard assessment model for debris flow prediction

Debris flow disasters have plagued Taiwan in recent decades, and caused casualties and destruction of property. Several methods, including the numerical method, statistical method, and experimental method, have been adopted in recent years to predict debris flow, and more recently, the neural networ...

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2010-06, Vol.60 (8), p.1619-1630
Main Authors: Chang, Tung-Chiung, Wang, Zhou-Yin, Chien, Yue-Hone
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a338t-aa8d0b0afa03525193b582582c0af27b18e70b04c16f013d5f65fe8191ed89a33
cites cdi_FETCH-LOGICAL-a338t-aa8d0b0afa03525193b582582c0af27b18e70b04c16f013d5f65fe8191ed89a33
container_end_page 1630
container_issue 8
container_start_page 1619
container_title Environmental earth sciences
container_volume 60
creator Chang, Tung-Chiung
Wang, Zhou-Yin
Chien, Yue-Hone
description Debris flow disasters have plagued Taiwan in recent decades, and caused casualties and destruction of property. Several methods, including the numerical method, statistical method, and experimental method, have been adopted in recent years to predict debris flow, and more recently, the neural network (NN) and the genetic algorithm (GA) methods have been introduced to simulate the occurrence of debris flows. This study proposes using the GA to weigh seven important variables according to principles similar to natural selection. The study then simultaneously inputs these variables into a NN model to predict debris flow occurrences based on relevant factors. There were 154 potential cases of debris flow collected from eastern Taiwan and fed into the model for testing. The average ratio of successful prediction reached 94.94%, which demonstrates that the proposed model can provide stable and reliable results for predicting debris flow in hazard mitigation and guard systems.
doi_str_mv 10.1007/s12665-009-0296-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881065986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416939041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-aa8d0b0afa03525193b582582c0af27b18e70b04c16f013d5f65fe8191ed89a33</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWGp_gLfFe3QmMWlylKJWKHjRc8huEtnS3azJFqu_3pQVPRkGMsy89wY-Qi4RrhFgeZORSSkogKbAtKSHEzJDJSWVTOvT317BOVnkvIXyOHINckbY2n7Z5Cqbs8-58_1YddH5XRViqpyvU5ursIsf1ZC8a5uxjf0FOQt2l_3i55-T14f7l9Wabp4fn1Z3G2o5VyO1VjmowQYLXDCBmtdCsVJNmbFljcovy_62QRkAuRNBiuAVavRO6ZIxJ1dT7pDi-97n0WzjPvXlpFEKQQqtZBHhJGpSzDn5YIbUdjZ9GgRzhGMmOKbAMUc45lA8bPLkou3ffPoL_t_0DdtpZm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881065986</pqid></control><display><type>article</type><title>Hazard assessment model for debris flow prediction</title><source>Springer Nature</source><creator>Chang, Tung-Chiung ; Wang, Zhou-Yin ; Chien, Yue-Hone</creator><creatorcontrib>Chang, Tung-Chiung ; Wang, Zhou-Yin ; Chien, Yue-Hone</creatorcontrib><description>Debris flow disasters have plagued Taiwan in recent decades, and caused casualties and destruction of property. Several methods, including the numerical method, statistical method, and experimental method, have been adopted in recent years to predict debris flow, and more recently, the neural network (NN) and the genetic algorithm (GA) methods have been introduced to simulate the occurrence of debris flows. This study proposes using the GA to weigh seven important variables according to principles similar to natural selection. The study then simultaneously inputs these variables into a NN model to predict debris flow occurrences based on relevant factors. There were 154 potential cases of debris flow collected from eastern Taiwan and fed into the model for testing. The average ratio of successful prediction reached 94.94%, which demonstrates that the proposed model can provide stable and reliable results for predicting debris flow in hazard mitigation and guard systems.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-009-0296-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biogeosciences ; Debris flow ; Detritus ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Experimental methods ; Genetic algorithms ; Geochemistry ; Geology ; Hazards ; Hydrology/Water Resources ; Landslides &amp; mudslides ; Original Article ; Statistical methods ; Terrestrial Pollution</subject><ispartof>Environmental earth sciences, 2010-06, Vol.60 (8), p.1619-1630</ispartof><rights>Springer-Verlag 2009</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-aa8d0b0afa03525193b582582c0af27b18e70b04c16f013d5f65fe8191ed89a33</citedby><cites>FETCH-LOGICAL-a338t-aa8d0b0afa03525193b582582c0af27b18e70b04c16f013d5f65fe8191ed89a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Tung-Chiung</creatorcontrib><creatorcontrib>Wang, Zhou-Yin</creatorcontrib><creatorcontrib>Chien, Yue-Hone</creatorcontrib><title>Hazard assessment model for debris flow prediction</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Debris flow disasters have plagued Taiwan in recent decades, and caused casualties and destruction of property. Several methods, including the numerical method, statistical method, and experimental method, have been adopted in recent years to predict debris flow, and more recently, the neural network (NN) and the genetic algorithm (GA) methods have been introduced to simulate the occurrence of debris flows. This study proposes using the GA to weigh seven important variables according to principles similar to natural selection. The study then simultaneously inputs these variables into a NN model to predict debris flow occurrences based on relevant factors. There were 154 potential cases of debris flow collected from eastern Taiwan and fed into the model for testing. The average ratio of successful prediction reached 94.94%, which demonstrates that the proposed model can provide stable and reliable results for predicting debris flow in hazard mitigation and guard systems.</description><subject>Biogeosciences</subject><subject>Debris flow</subject><subject>Detritus</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Experimental methods</subject><subject>Genetic algorithms</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hazards</subject><subject>Hydrology/Water Resources</subject><subject>Landslides &amp; mudslides</subject><subject>Original Article</subject><subject>Statistical methods</subject><subject>Terrestrial Pollution</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWGp_gLfFe3QmMWlylKJWKHjRc8huEtnS3azJFqu_3pQVPRkGMsy89wY-Qi4RrhFgeZORSSkogKbAtKSHEzJDJSWVTOvT317BOVnkvIXyOHINckbY2n7Z5Cqbs8-58_1YddH5XRViqpyvU5ursIsf1ZC8a5uxjf0FOQt2l_3i55-T14f7l9Wabp4fn1Z3G2o5VyO1VjmowQYLXDCBmtdCsVJNmbFljcovy_62QRkAuRNBiuAVavRO6ZIxJ1dT7pDi-97n0WzjPvXlpFEKQQqtZBHhJGpSzDn5YIbUdjZ9GgRzhGMmOKbAMUc45lA8bPLkou3ffPoL_t_0DdtpZm4</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Chang, Tung-Chiung</creator><creator>Wang, Zhou-Yin</creator><creator>Chien, Yue-Hone</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20100601</creationdate><title>Hazard assessment model for debris flow prediction</title><author>Chang, Tung-Chiung ; Wang, Zhou-Yin ; Chien, Yue-Hone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-aa8d0b0afa03525193b582582c0af27b18e70b04c16f013d5f65fe8191ed89a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biogeosciences</topic><topic>Debris flow</topic><topic>Detritus</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Experimental methods</topic><topic>Genetic algorithms</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hazards</topic><topic>Hydrology/Water Resources</topic><topic>Landslides &amp; mudslides</topic><topic>Original Article</topic><topic>Statistical methods</topic><topic>Terrestrial Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Tung-Chiung</creatorcontrib><creatorcontrib>Wang, Zhou-Yin</creatorcontrib><creatorcontrib>Chien, Yue-Hone</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Tung-Chiung</au><au>Wang, Zhou-Yin</au><au>Chien, Yue-Hone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hazard assessment model for debris flow prediction</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>60</volume><issue>8</issue><spage>1619</spage><epage>1630</epage><pages>1619-1630</pages><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Debris flow disasters have plagued Taiwan in recent decades, and caused casualties and destruction of property. Several methods, including the numerical method, statistical method, and experimental method, have been adopted in recent years to predict debris flow, and more recently, the neural network (NN) and the genetic algorithm (GA) methods have been introduced to simulate the occurrence of debris flows. This study proposes using the GA to weigh seven important variables according to principles similar to natural selection. The study then simultaneously inputs these variables into a NN model to predict debris flow occurrences based on relevant factors. There were 154 potential cases of debris flow collected from eastern Taiwan and fed into the model for testing. The average ratio of successful prediction reached 94.94%, which demonstrates that the proposed model can provide stable and reliable results for predicting debris flow in hazard mitigation and guard systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12665-009-0296-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2010-06, Vol.60 (8), p.1619-1630
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_journals_881065986
source Springer Nature
subjects Biogeosciences
Debris flow
Detritus
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Experimental methods
Genetic algorithms
Geochemistry
Geology
Hazards
Hydrology/Water Resources
Landslides & mudslides
Original Article
Statistical methods
Terrestrial Pollution
title Hazard assessment model for debris flow prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hazard%20assessment%20model%20for%20debris%20flow%20prediction&rft.jtitle=Environmental%20earth%20sciences&rft.au=Chang,%20Tung-Chiung&rft.date=2010-06-01&rft.volume=60&rft.issue=8&rft.spage=1619&rft.epage=1630&rft.pages=1619-1630&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-009-0296-x&rft_dat=%3Cproquest_cross%3E2416939041%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a338t-aa8d0b0afa03525193b582582c0af27b18e70b04c16f013d5f65fe8191ed89a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881065986&rft_id=info:pmid/&rfr_iscdi=true