Loading…
The Dehn function of Richard Thompson’s group F is quadratic
We prove that the Dehn function (that is, the smallest isoperimetric function) of the R. Thompson's group F is quadratic. [PUBLICATION ABSTRACT]
Saved in:
Published in: | Inventiones mathematicae 2006-02, Vol.163 (2), p.313-342 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c272t-d52905617d011bcee46c72f70d0d788673fa3a39db91e0dcfbc4e1cbf868b33a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c272t-d52905617d011bcee46c72f70d0d788673fa3a39db91e0dcfbc4e1cbf868b33a3 |
container_end_page | 342 |
container_issue | 2 |
container_start_page | 313 |
container_title | Inventiones mathematicae |
container_volume | 163 |
creator | Guba, V.S. |
description | We prove that the Dehn function (that is, the smallest isoperimetric function) of the R. Thompson's group F is quadratic. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00222-005-0462-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881390674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418689951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-d52905617d011bcee46c72f70d0d788673fa3a39db91e0dcfbc4e1cbf868b33a3</originalsourceid><addsrcrecordid>eNotkM1KxDAYRYMoWEcfwF1wH_2SdJpmI8joqDAgyLgOaX5sB6fpJO3CWfka83o-iR3q6i7O5V44CF1TuKUA4i4BMMYIwJxAXjCyP0EZzTkjlElxirIRA5GSwjm6SGkDMELBMnS_rh1-dHWL_dCavgktDh6_N6bW0eJ1HbZdCu3vzyHhzxiGDi9xk_Bu0DbqvjGX6Mzrr-Su_nOGPpZP68ULWb09vy4eVsQwwXpi50zCvKDCAqWVcS4vjGBegAUryrIQ3GuuubSVpA6s8ZXJHTWVL4uy4iOZoZtpt4thN7jUq00YYjteqrKkXEIh8rFEp5KJIaXovOpis9XxW1FQR0tqsqRGS-poSe35H3Z_Wtk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881390674</pqid></control><display><type>article</type><title>The Dehn function of Richard Thompson’s group F is quadratic</title><source>Springer Nature</source><creator>Guba, V.S.</creator><creatorcontrib>Guba, V.S.</creatorcontrib><description>We prove that the Dehn function (that is, the smallest isoperimetric function) of the R. Thompson's group F is quadratic. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-005-0462-z</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><ispartof>Inventiones mathematicae, 2006-02, Vol.163 (2), p.313-342</ispartof><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-d52905617d011bcee46c72f70d0d788673fa3a39db91e0dcfbc4e1cbf868b33a3</citedby><cites>FETCH-LOGICAL-c272t-d52905617d011bcee46c72f70d0d788673fa3a39db91e0dcfbc4e1cbf868b33a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guba, V.S.</creatorcontrib><title>The Dehn function of Richard Thompson’s group F is quadratic</title><title>Inventiones mathematicae</title><description>We prove that the Dehn function (that is, the smallest isoperimetric function) of the R. Thompson's group F is quadratic. [PUBLICATION ABSTRACT]</description><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAYRYMoWEcfwF1wH_2SdJpmI8joqDAgyLgOaX5sB6fpJO3CWfka83o-iR3q6i7O5V44CF1TuKUA4i4BMMYIwJxAXjCyP0EZzTkjlElxirIRA5GSwjm6SGkDMELBMnS_rh1-dHWL_dCavgktDh6_N6bW0eJ1HbZdCu3vzyHhzxiGDi9xk_Bu0DbqvjGX6Mzrr-Su_nOGPpZP68ULWb09vy4eVsQwwXpi50zCvKDCAqWVcS4vjGBegAUryrIQ3GuuubSVpA6s8ZXJHTWVL4uy4iOZoZtpt4thN7jUq00YYjteqrKkXEIh8rFEp5KJIaXovOpis9XxW1FQR0tqsqRGS-poSe35H3Z_Wtk</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Guba, V.S.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200602</creationdate><title>The Dehn function of Richard Thompson’s group F is quadratic</title><author>Guba, V.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-d52905617d011bcee46c72f70d0d788673fa3a39db91e0dcfbc4e1cbf868b33a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guba, V.S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guba, V.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dehn function of Richard Thompson’s group F is quadratic</atitle><jtitle>Inventiones mathematicae</jtitle><date>2006-02</date><risdate>2006</risdate><volume>163</volume><issue>2</issue><spage>313</spage><epage>342</epage><pages>313-342</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We prove that the Dehn function (that is, the smallest isoperimetric function) of the R. Thompson's group F is quadratic. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-005-0462-z</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2006-02, Vol.163 (2), p.313-342 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_journals_881390674 |
source | Springer Nature |
title | The Dehn function of Richard Thompson’s group F is quadratic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dehn%20function%20of%20Richard%20Thompson%E2%80%99s%20group%20F%20is%20quadratic&rft.jtitle=Inventiones%20mathematicae&rft.au=Guba,%20V.S.&rft.date=2006-02&rft.volume=163&rft.issue=2&rft.spage=313&rft.epage=342&rft.pages=313-342&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-005-0462-z&rft_dat=%3Cproquest_cross%3E2418689951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-d52905617d011bcee46c72f70d0d788673fa3a39db91e0dcfbc4e1cbf868b33a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881390674&rft_id=info:pmid/&rfr_iscdi=true |